大量出血症例に対する血液製剤の適正な使用のガイドライン

上田 裕一3) 碓氷 章彦4) 宮田 茂樹1) 板倉 敦夫2) 大北 裕5) 大西 佳彦6) 香取 信之7) 久志本成樹⁸⁾ 佐々木啓明9) 志水 秀行10) 覚14) 西村 邦宏11) 西脇 公俊12) 松下 $\mathbb{E}^{13)}$ 小川 紀野 修一15) 齋藤 伸行17) 久保 隆彦16) 田中 裕史18) 田村 高廣19) 中井 陸運11) 聡20) 前田 琢磨21) 牧野真太郎2) 松永 茂剛23) 藤井 前田 平生22)

キーワード: 大量出血, フィブリノゲン製剤, 大量輸血プロトコール, 遺伝子組み換え活性化第 VII 因子, 抗線溶療法

1. 推奨一覧

CQ1: 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

【心臟血管外科】Recommendation

血漿フィブリノゲン値<150mg/dlを来す低フィブリノゲン血症では、出血量や同種血製剤の使用量が増加する (エビデンスレベル:B). 複雑な心臓血管外科手術に関連する大量出血患者に対して、フィブリノゲン濃縮製剤あるいはクリオプレシピテートを用いた止血管理をおこなうことを弱く推奨する (推奨度:2C). フィブリノゲン濃

- 1) 国立循環器病研究センター臨床検査部
- 2) 順天堂大学医学部產婦人科学講座
- 3) 奈良県立病院機構奈良県総合医療センター
- 4) 名古屋大学大学院医学系研究科心臓外科学
- 5) 神戸大学医学部心臓血管外科学
- 6) 国立循環器病研究センター手術部
- 7) 慶應義塾大学麻酔学教室
- 8) 東北大学大学院医学系研究科外科病態学講座救急医学分野
- 9) 国立循環器病研究センター心臓血管外科
- 10) 慶應義塾大学外科(心臟血管)
- 11) 国立循環器病研究センター統計解析室
- 12) 名古屋大学大学院医学系研究科麻酔·蘇生医学分野
- 13) 名古屋大学医学部附属病院輸血部
- 14) 京都府立医科大学大学院医学研究科麻酔科学教室
- 15) 日本赤十字社北海道ブロック血液センター
- 16) 医療法人社団シロタクリニック
- 17) 日本医科大学千葉北総病院救命救急センター
- 18) 神戸大学医学部心臓血管外科低侵襲外科
- 19) 名古屋大学医学部附属病院麻酔科
- 20) 旭川医科大学臨床検査医学講座
- 21) 国立循環器病研究センター輸血管理室
- 22) 埼玉医科大学総合医療センター輸血細胞医療部
- 23) 埼玉医科大学総合医療センター産婦人科
- 〔受付日:2018年12月11日, 受理日:2019年1月4日〕

縮製剤の初期用量として、50 mg/kg程度を弱く推奨する。また、クリオプレシピテートの初期用量として、 $3 \sim 4 \text{ml/kg}$ 程度を推奨する(推奨度:2 C)。

出血量軽減や同種血製剤削減を目的に、また、フィブリノゲン濃縮製剤やクリオプレシピテートの投与量決定には、血漿フィブリノゲン値または全血フィブリノゲン値や Viscoelastic device (血液粘弾性検査) などの Point-of-care (POC) テストを用いたモニタリングを強く推奨する (推奨度:1B).

【產科】Recommendation

妊産褥婦の大量出血症例に対してクリオプレシピテート、フィブリノゲン濃縮製剤投与は有用であり、その使用が提案される(2C).

血漿フィブリノゲン濃度 150~200mg/dl が、投与のタイミングとして提案される (2C).

【外傷】Recommendation

血漿フィブリノゲン<150mg/dJを伴う外傷による大量出血患者に対して、クリオプレシピテートあるいはフィブリノゲン濃縮製剤を投与することを弱く推奨する(2C). ただし、フィブリノゲン濃縮製剤は外傷による後天性低フィブリノゲン血症患者に対する保険適応はなく、クリオプレシピテートは各施設の院内調剤によってのみ使用可能であるため、施設体制整備をしておくことが必要である.

【その他の領域】Recommendation

心臓血管外科,外傷,産科以外のその他の臨床領域においてフィブリノゲン製剤の使用を推奨する (2C). 最適投与量についてはエビデンスが不足していることから結論を保留する. クリオプレシピテートの有用性についても同様に結論を保留する.

CQ2: 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また、FFP: PC: RCC の最適投与比はどれくらいか?

【外傷】Recommendation

大量輸血を要することが予想される外傷患者に対して、大量輸血プロトコールを用いることを強く推奨する(1C). 大量輸血が予想される患者の初期治療においては、早期に各製剤の投与単位比として新鮮凍結血漿:血小板濃縮製剤:赤血球が1:1:1となることを目標とし、少なくとも新鮮凍結血漿:血小板濃縮製剤:赤血球投与比≥1:1:2を維持できるように新鮮凍結血漿,血小板濃縮製剤を投与することを強く推奨する(1C).

【心臟血管外科】Recommendation

大量出血をきたした心臓血管外科手術に対して大量輸血プロトコール massive transfusion protocol (MTP) を用いることを弱く推奨する (2C).

心臓血管外科手術に対して大量輸血プロトコール massive transfusion protocol (MTP) を行う場合,各製剤の投与単位比として新鮮凍結血漿:血小板濃縮製剤:赤血球を1:1:1とすることを目標とし、少なくとも新鮮凍結血漿:赤血球投与比は1:1よりも高い比率を強く推奨する (1C).

【産科】Recommendation

妊産褥婦の産科大量出血症例に対して MTP は有効であり、各製剤の投与単位比として FFP/RCC 1以上の投与を提案する (2C).

【その他の領域】Recommendation

心臓血管外科,外傷,産科以外のその他の臨床領域における大量出血症例に対する massive transfusion protocol (MTP) は推奨される (2C). FFP: PC: RCC の最適投与比についてはエビデンスが不足していることから結論を保留する.

CQ3: 大量輸血療法において Prothrombin Complex Concentrate (PCC) や recombinant activated factor VII

(rFVIIa) の投与は推奨されるか?

【心臟血管外科】Recommendation

rFVIIaの使用は動脈性血栓症の発生リスクを上昇させることから、出血軽減を目的とした予防的投与をおこなわないことを強く推奨する(IB). 人工心肺離脱後に危機的な出血に陥り、かつ通常の止血療法に不応である場合には、 $40\sim80\mu g/kg$ の rFVIIa の治療的投与を考慮することを弱く推奨する(2C). また、初回投与で十分な止血効果が得られない場合には、再投与をおこなわないことを推奨する(2B).

緊急心臓外科手術をうけるワルファリン服用患者が、ワルファリン効果の急性拮抗が必要と判断される場合には、PCCを使用することを強く推奨する. 新鮮凍結血漿 (FFP) に比較して、PCC は凝固因子の補充効率に優れており、迅速な拮抗効果が期待できる (1B).

ワルファリン非服用患者における複雑心臓手術において、人工心肺離脱後に危機的な出血に陥り、かつ通常の止血療法に不応である場合には、20~30IU/kgのPCC 投与を考慮することを弱く推奨する (2C).

【外傷】Recommendation

外傷患者の大量輸血療法において、適応外での PCC の投与が推奨されるかどうか現時点では不明である (D). 外傷患者の大量輸血療法において、適応外での rFVIIa は投与しないことを弱く推奨する (2C).

【産科】Recommendation

rFVIIa 投与は現状で実施できる凝固障害に対する全ての輸血治療に反応せず、生命の危機を伴う産科危機的出血の妊産褥婦に限定して推奨する (2C).

産科出血における PCC の臨床応用、研究はなく推奨はしない(D).

【その他の領域】Recommendation

ワルファリン内服患者に対し、緊急性が高く出血の予想される侵襲的処置・手術を施行する場合、術前に PT-INR を測定したうえで 4 因子含有プロトロンビン複合体製剤(4f-PCC)とビタミン K による拮抗を行うことを推奨する (1B).

非ワルファリン患者の大量出血における 4f-PCC の投与に関しては推奨に至るエビデンスはない (D). 大量出血症例において rFVIIa の投与を行わないことを推奨する (2D).

CQ4:大量出血症例において抗線溶療法は推奨されるか?

【外傷】Recommendation

トラネキサム酸は、外傷性出血を伴う成人患者に対して、その重症度に関係なく、可能な限り早期(発症後3時間以内が望ましい)に投与することを弱く推奨する(2B).

【心臟血管外科】Recommendation

心臓血管外科手術における大量出血症例では、輸血量の減少目的で、早期からの開始によるトラネキサム酸 (TXA) の投与を弱く推奨する。死亡率は増加させない。ただし高用量の使用は痙攣の発生が増えるため注意が必要である (2C)。

【產科】Recommendation

妊産褥婦の大量出血症例に対して、出産後3時間以内のできる限り早期からのトラネキサム酸(TXA)投与を提案する(2B).

【その他の領域】Recommendation

整形外科や婦人科,腹部外科手術において、出血が予想される場合または線溶亢進が存在する大量出血を生じた場合に、出血量・輸血量の減少を目的とした TXA の予防的または治療的投与を推奨する (2B).

2. 診療ガイドラインがカバーする内容

(1) タイトル

大量出血症例に対する血液製剤の適正な使用のガイドライン

(2) 目的

●大量出血を伴う重篤な患者の診療において、医療従事者が患者の予後改善につながる適切な輸血療法を実施するための判断を支援することを目的とする。大量出血症例における以下のアウトカムを主要評価項目として、エビデンス総体を構築し、推奨を決定した。

死亡率または生存率

28日 (30日を含む) 間死亡率

院内死亡率

出血量

輸血必要量, 赤血球輸血量

同種血輸血回避率

出血が持続するための再手術

止血成功率

ICU 滞在日数

在院日数等

人工呼吸器装着期間

急性呼吸障害 (acute lung injury: ALI, acute respiratory distress syndrome: ARDS)

血栓塞栓症

腎機能障害

神経学的合併症 (痙攣等)

頭蓋内出血

その他の有害事象

PT, APTT, その他の凝固パラメータ, フィブリノゲン濃度

- ●それぞれの clinical question (CQ) ごとに、上記アウトカムについてあらかじめ点数をつけて、その重要度を決定し、『重大』または『重要』に分類されたアウトカムのうち、重要性の得点が高いものから最大7個程度を上限として採用し、評価した.
- ●各 CQ に対する推奨度は、得点の高いものに対するエビデンスを優先して決定した.
- (3) トピック

外傷、心臓血管外科、産科などの領域における大量出血患者に対する輸血療法

(4) 想定される利用者, 利用施設

以下の施設、部門に所属する医師ならびに医療関係者

- ●大量出血症例の治療にあたる高次施設
- ●救急医療施設
- ●手術室
- ●集中治療室
- ●心臓血管外科を含む外科, 救急科, 産科, 麻酔科, 輸血部

3. Systematic review に関する事項

(1) 実施方法

1995年~2014年末までに報告された文献に対して、CQに関連した key words を用いて第一次文献検索を行い 3,193 文献を抽出した。タイトルならびに抄録内容をもとに CQ に関連するかどうか、評価基準に合致するかについてのスクリーニングを行った結果、3,193 文献から 697 文献を二次抽出した。文献内容の詳細な検討の結果、心臓血管外科領域 172 文献、外傷領域 194 文献、産科領域 149 文献、その他の領域 144 文献を3 次抽出した。さらに、2014年末以降に報告された重要な文献(特にこの時期にエビデンスレベルの高いRCT の結果の報告が多い)を網羅的にカバーするために、班会議で承認された 2015年末まで拡大した文献検索(key words の追加も合わせた)を追加実施した。2,129 文献がさらに評価対象となり、202 文献を二次

抽出し、その後、三次抽出を行った.

これら合計 5,322 文献に対する最終的な検討の結果、エビデンス総体を抽出するための評価対象として、心臓血管外科領域 81 文献、外傷領域 228 文献、産科領域 115 文献、その他の領域 72 文献が選択された。それら以外の重要文献やステートメントの作成に必要と考えられる論文はハンドサーチ文献として追加し、これらの論文からエビデンス総体を抽出するために、systematic review team が各報告を介入研究と観察研究に分けて、バイアスリスクを含めた詳細な評価を実施した。エビデンス総体の抽出後、systematic review report としてガイドライン作成グループにその結果が提出された。

ガイドライン作成グループの担当者は、systematic review report に基づき、各 CQ の領域ごとにエビデンス総体の総括を行い、推奨文案ならびに推奨の強さの暫定的な判定を行った。それぞれの CQ に対する最終的なエビデンスレベルと推奨グレードを「Minds 診療ガイドライン作成の手引き 2014」に準じて、班会議の審議により決定した。

推奨の強さは、「1」:強く推奨する、「2」:弱く推奨する(提案する)の 2 通りで提示した。上記推奨の強さにアウトカム全般のエビデンスの強さ(A、B、C、D)を併記した。

- A(強):効果の推定値に強く確信がある
- B(中):効果の推定値に中程度の確信がある
- C(弱):効果の推定値に対する確信は限定的である
- D(とても弱い):効果の推定値がほとんど確信できない

(2) エビデンスの検索

エビデンスタイプ:

- ●評価順(介入研究と観察研究は,分けて評価を行う)
 - ① RCT
 - 2 meta-analysis
 - ③観察研究

(n=200 を超える, もしくは propensity score matching などによって, 適切な対照群が検討されている, もしくは重篤な副作用など, ガイドライン策定について重要な outcome について検討されている文献のみ評価対象とする)

④診療ガイドラインについては、AGREE2 を用いて評価を行い、十分に検討した後、参考にする. (海外の診療ガイドラインはコンセンサスも含まれ、本邦の医療事情と大きく異なることが予想されることから、参考とする程度に留める)

ただし、診療ガイドラインに meta-analysis が含まれる場合には、meta-analysis として取り扱う。また、バイアスリスクの評価も参考にしてもよい.

- ⑤systematic review は、重要な文献の漏れがないかどうかの確認に使用する. (一つの CQ に関して最新のものを 2.3 個に絞り検討する)
- ⑥総説は、最新のものに限り [一つの CQ に最新のもの数個(3, 4 個) に絞り] 検討する.

データベース:

大量出血,大量輸血に関するキーワードを設定し,さらに,キーワード設定に修正を加えて,2回にわたり,Pubmed, The Cochran library, 医中誌のデータベースを用いて医学文献検索専門家(一般財団法人国際医学情報センター)の協力を得て検索を行った.

主要な文献検索式は以下の通りである.

- Search (((critical or crisis or fatal or lethal or massive or heavy or shock* or postpartum*) and (bleeding* or bleed or hemorrhage* or haemorrhage* or hemorrhagia* or hemorrhaging* or transfusion* or exsanguination*)) or resuscitation*)
- Search (fibrinogen* or cryoprecipitate* or "fibrinogen concentrate" or "prothrombin complex concentrate" or "recombinant VIIa" or VIIa or "novoseven rVIIa" or anti-fibrinolytic* or antifibrinolytic* or plasma or platelet* or "aminocaproic acid" or "tranexamic acid" or aprotinin*)

検索の基本方針:

介入の検索に関しては、PICO フォーマットを用い、P (Patient) と I (Intervention) の組み合わせを基本 とした。O (outcome) については、特定せず検索を行った。

検索対象期間:

1995年~2015年末

(3) エビデンスの評価と統合の方法

- ●エビデンス総体の強さの評価は、「Minds 診療ガイドライン作成マニュアル 2014 (ver 2.0)」に則り作成した手順書に基づいて行う。
- ●エビデンス総体の統合は、質的な統合を基本とした.

4. 推奨最終化、公開までに関する事項

- (1) 最終化
 - ●外部評価を実施する.
 - ●パブリックコメントを募集して結果を最終版に反映させる.

(2) 外部評価の具体的方法

- ●ガイドライン案を策定し、以下の方法を用いて、関連学会に外部評価を依頼した.
- ●外部評価

関連学会(日本外傷学会,日本救急医学会,日本胸部外科学会,日本血栓止血学会,日本産科婦人科学会,日本産婦人科医会,日本周産期・新生児医学会,日本心臓血管外科学会,日本心臓血管麻酔学会,日本麻酔科学会,日本輸血・細胞治療学会:50音順)のホームページへのパブリックコメント案内および日本輸血・細胞治療学会のガイドラインに対するパブリックコメントを募集するweb siteへのリンクを掲載すること,あるいは会員への電子メール配信により,各学会員に対して広くパブリックコメントを求めた.(募集期間:2018年10月29日から2018年12月7日)

●いただいたパブリックコメントについて、ガイドライン作成グループは、各コメントに対してガイドライン案を変更する必要性について討議し、対応を決定した.

(3) 公開

- ●外部評価,パブリックコメントへの対応が終了した時点で,公開の最終決定を行った.
- ●日本輸血・細胞治療学会の web site などを用いて公開する.また,日本輸血細胞治療学会誌に掲載する.

5. 略語リスト

4f-PCC: four-factor prothrombin complex concentrate

ALI: acute lung injury

ARDS: acute respiratory distress syndrome

CI : confidence interval CQ : clinical question

DIC: disseminated intravascular coagulation

FFP: fresh frozen plasma

MTP: massive transfusion protocol

OD: odds ratio

PC: platelet concentrate

PCC: prothrombin complex concentrate

PPH: postpartum hemorrhage

PT-INR: prothrombin time-international normalized ratio

RCC: red cell concentrate
RCT: randomized control trial

rFVIIa: recombinant activated factor VII

RR: relative risk

SD: standard deviation
TEG: thromboelastography
TXA: tranexamic acid
VKA: vitamin K antagonist

6. 序文

大量出血を伴う重症患者では、血管破綻部位から組織因子が血中へ放出される.形成された組織因子/第 VII 因子複合体を契機とした消費性凝固障害や、血管内皮障害、虚血再灌流障害、炎症などによる凝固異常、線溶亢進が起こり、止血困難となる¹⁾。また、心臓血管外科手術では、上記に加え、人工心肺使用に伴う希釈性凝固障害、凝固因子活性化、血小板活性化による消費により、止血困難に陥りやすい²⁾。通常、大量出血症例は、24 時間以内に 20 単位以上の赤血球輸血を要す、もしくはそれと同等のリスクがある患者群として定義されることが多い³⁾。しかし産科では突発的に大量出血を発症することがあり、常位胎盤早期剝離、羊水塞栓症などでは、出血量の少ない早期より播種性血管内凝固症候群(disseminated intravascular coagulation: DIC)、凝固障害を伴いうることが特徴である.またこれらの疾患では、二次的な弛緩出血を併発して急速に DIC が重篤化することも少なくない⁴⁾.

よって、本ガイドラインの対象となる大量出血を伴う患者群について、外傷、心臓血管外科、産科などの各領域において、統一して一律に定義することは困難であり、出血により循環が破綻する、もしくはそのリスクがある患者群とすることが妥当と考えらえる。近年のエビデンスにおいては、危機的出血を伴う、もしくはそのリスクが高い重症例では、非常に早い段階から希釈性凝固障害のみによらない凝固止血障害を伴うため、これらの病態を考えた輸血療法として、早期からの十分な凝固止血因子の補充の重要性とその転帰改善効果を示唆している^{2)~5)}.

一方、本邦の現状として、厚生労働省から出されていた "旧"「血液製剤の使用指針」(平成 28 年 6 月一部改訂)に基づいた対応では、循環動態改善のため、赤血球(red cell concentrate:RCC)輸血や晶質液、膠質液の投与が優先されることとなる。この場合、希釈性凝固障害を引き起こし、凝固障害を悪化させる可能性が高く、加えて、出血性ショックやそれに伴う低体温、アシドーシスも、消費性、希釈性凝固止血障害を増悪させ、悪循環に陥り、患者予後を損なう。

よって、大量出血症例における急性凝固止血障害の実態を的確に把握し、状況に応じた最適な血液製剤の迅速投与が患者予後改善、適切な血液製剤使用につながる可能性がある³⁾⁶⁷⁷. 最新の知見、臨床試験の結果を考慮し、海外では、主に外傷症例に対して、大量輸血プロトコール(massive transfusion protocol:MTP)を運用し、早期からの先制的な新鮮凍結血漿(fresh frozen plasma:FFP)、血小板製剤(platelet concentrate:PC)の投与が有効である、との報告が増加している^{3)~5)8)}. また、心臓血管外科領域を中心として、フィブリノゲン製剤(フィブリノゲン濃縮製剤もしくはクリオプレシピテート)⁷⁾⁹⁾¹⁰⁾、プロトロンビン複合体製剤(prothrombin complex concentrate:PCC)¹¹¹、遺伝子組み換え活性型凝固第 VII 因子(recombinant activated factor VII:rFVIIa)¹²⁾など、従来の血液製剤に加えて、様々な血液製剤の有効性も検討されている。また、ベッドサイドモニタリング等で凝固止血異常を迅速に把握し、結果に基づくアルゴリズムで、各血液製剤の投与を決定する方法の有効性を示す報告も増加している⁶⁾¹³⁾¹⁴⁾.

これら、最新のエビデンスに留意し、本邦においても、各施設が独自に工夫した輸血療法(例えば、院内作製クリオプレシピテートや、フィブリノゲン濃縮製剤の off-label 使用、MTP の運用など)を展開している施設も増加しているが、本邦の現在の改訂された「血液製剤の使用指針」においても、大量出血時の対応について詳細な記載は少なく、また、これら最新のエビデンスについての言及も少ない。

外傷による急性期死亡の20~40%は、出血が原因との報告もあるように、大量出血症例は予後が悪い¹⁾¹⁵.しかし、この50%以上が凝固障害を来たしたことによるものであることから、適切な治療介入により患者予後改善が認められる可能性がある。また、大量出血症例に輸血される血液製剤使用割合は非常に多く、早期止血を導く治療法が確立されれば、血液製剤使用量の削減も可能となる。よって、本邦における少子高齢化に伴う血液製剤の受給バランスの悪化の懸念に対しての、有効な解決策ともなりうる。したがって、最新の科学的エビデンスに基づいた大量出血症例に対する輸血ガイドラインの策定は、患者予後改善、血液製剤の適正使用、使用量削減に貢献できる可能性があり、その早期策定が求められている。

上述した最近の臨床研究などで有効性が報告されている製剤の中で,フィブリノゲン製剤,PCC,rFVIIa については,本邦において大量出血症例に対して薬事承認が得られていないため,off-label 使用が増加している.また,海外では,FFP の融解後使用期限を5日間とし,融解したFFP を常備することで,FFP の迅速な投与を可能としMTP が運用されている¹⁶.一方,本邦では,FFP は融解後3時間以内に使用するという制限がある(注:2018年9月に,融解後24時間以内と改訂された).このように,海外の輸血療法と本邦における輸血療法の現状に大きな解離があることも少なくなく,臨床現場での混乱も生じている.よって,大量出血症例に対する輸血ガイドラインでは,海外と本邦において実施されている輸血療法の相違への配慮も必要となる.また,大量出血に至る患者背景,病態は,領域ごとに大きく異なる可能性も指摘されており¹⁾²⁾⁴,心臓血管外科,外傷(救急),産科など,領域ごと

の特性にも配慮したガイドライン策定が求められる。そこで、本ガイドラインでは、評価したエビデンス総体に基づく推奨に際して、本邦の実臨床に合わせていかに活用するかについても、Practice points として言及することとした。

近年,欧米を中心とした海外では,大量出血症例に対する多様な輸血療法の選択を可能としている.これに対して,本邦における大量出血症例への対応に関する指針や,それに基づく輸血療法の実施の在り方,特に,血液製剤の入手,準備,使用方法は,その改善が十分でないと考えられる.最近のエビデンスに基づく救命のための対応を行っても,保険診療においては過剰あるいは不適切治療として査定されることも少なくない.また,輸血管理料算定加算としても不利な状況となる.大量出血症例は,その緊急性と重症度から,RCT(randomized control trial)の実施や,その対象症例の選択が困難であるなどの課題も多く,確立されたエビデンスも少ない.しかし,本研究班においては,可能な限り患者にとって重要な予後の改善を考慮し,推奨を決定することとした.前述したようにこの領域は,質の高いエビデンスに基づく十分に確立された輸血療法を推奨することは困難であるが,本ガイドラインが,本邦での,予後の悪い重篤な大量出血症例に対する最適輸血療法の検討に貢献し,問題点の整理,実施体制の再構築につながることを期待している.さらに,本ガイドラインでの推奨に含まれ,海外で広く使用されているにも関わらず本邦で未承認である製剤の開発推進に寄与し,早期の薬事承認,患者予後改善につながることを期待するものである.

文 献

- 1) Rossaint R, Bouillon B, Cerny V, et al: The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care, 20: 100, 2016.
- 2) Mazzeffi MA, Chriss E, Davis K, et al: Optimal plasma transfusion in patients undergoing cardiac operations with massive transfusion. Ann Thorac Surg, 104: 153—160, 2017.
- 3) Holcomb JB, Tilley BC, Baraniuk S, et al: Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA, 313: 471—482, 2015.
- 4) Tanaka H, Katsuragi S, Osato K, et al: Efficacy of transfusion with fresh-frozen plasma: red blood cell concentrate ratio of 1 or more for amniotic fluid embolism with coagulopathy: a case-control study. Transfusion, 56: 3042—3046, 2016.
- 5) Holcomb JB, del Junco DJ, Fox EE, et al: The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg, 148: 127—136, 2013.
- 6) Karkouti K, Callum J, Wijeysundera DN, et al: Point-of-care hemostatic testing in cardiac surgery: a stepped-wedge clustered randomized controlled trial. Circulation, 134: 1152—1162, 2016.
- 7) Fominskiy E, Nepomniashchikh VA, Lomivorotov VV, et al: Efficacy and safety of fibrinogen concentrate in surgical patients: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth, 30: 1196—1204, 2016.
- 8) Delaney M, Stark PC, Suh M, et al: Massive transfusion in cardiac surgery: the impact of blood component ratios on clinical outcomes and survival. Anesth Analg, 124: 1777—1782, 2017.
- 9) Ranucci M, Baryshnikova E, Crapelli GB, et al: Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc, 4: e002066, 2015.
- 10) Rahe-Meyer N, Levy JH, Mazer CD, et al: Randomized evaluation of fibrinogen vs placebo in complex cardiovascular surgery (REPLACE): a double-blind phase III study of haemostatic therapy. Br J Anaesth, 117: 41—51, 2016.
- 11) Demeyere R, Gillardin S, Arnout J, et al: Comparison of fresh frozen plasma and prothrombin complex concentrate for the reversal of oral anticoagulants in patients undergoing cardiopulmonary bypass surgery: a randomized study. Vox Sang, 99: 251—260, 2010.
- 12) Gill R, Herbertson M, Vuylsteke A, et al: Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery. Circulation, 120: 21—27, 2009.
- 13) Rahe-Meyer N, Solomon C, Hanke A, et al: Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology, 118: 40—50, 2013.
- 14) Serraino GF, Murphy GJ: Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: updated systematic review and meta-analysis. Br J Anaesth, 118: 823—833, 2017.
- 15) Tisherman SA, Schmicker RH, Brasel KJ, et al: Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the Resuscitation Outcomes Consortium. Ann Surg, 261: 586—590, 2015.

16) Novak DJ, Bai Y, Cooke RK, et al: Making thawed universal donor plasma available rapidly for massively bleeding trauma patients: experience from the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial. Transfusion, 55: 1331—1339, 2015.

7. ガイドライン策定における重要臨床課題

大量出血症例の予後改善,血液製剤の適正使用につながる課題を明らかにすべく,近年の輸血療法に関する臨床 試験の報告をもとに班会議において討議し,最終的に以下の4つの重要臨床課題として取り上げることとした.

重要臨床課題1:「フィブリノゲン製剤(フィブリノゲン濃縮製剤もしくはクリオプレシピテート)」

"旧"「血液製剤の使用指針」(平成28年6月一部改訂)には,低フィブリノゲン血症(100mg/dl未満)への対応として,"わが国では濃縮フィブリノゲン製剤の供給が十分でなく,またクリオプリシピテート製剤が供給されていないことから,フィブリノゲンの補充には,新鮮凍結血漿を用いる"と記載されていた.しかしながら,大量出血時には,凝固因子の中でフィブリノゲンが最初にcritical level まで減少する可能性が高く,また,凝固系が活性化されトロンビン産生が起こっても,フィブリノゲンが著しく低下している場合には,凝固の最終段階となるフィブリン形成が十分に起こらず,止血が図れない可能性がある.よって,フィブリノゲン製剤(フィブリノゲン濃縮製剤もしくはクリオプレシピテート)投与による急速なフィブリノゲン値の改善が,大量出血症例における早期止血に対して有効である可能性がある.一方,血栓塞栓症などの有害事象の誘発についての懸念もある.よって,大量出血症例における急性凝固障害に対して,フィブリノゲン製剤が推奨できるかどうか,また,推奨できる場合には,輸注開始トリガー値はどれくらいかを検討する.

重要臨床課題2:「大量輸血プロトコール(MTP)」

"旧"「血液製剤の使用指針」(平成 28 年 6 月一部改訂)では、術中の出血に対して、"循環血液量に対する出血量の割合と臨床所見に応じて、原則として以下のような成分輸血により対処する"とされ、"循環血液量以上の大量出血(24 時間以内に 100%以上)時又は 100ml/分以上の急速輸血をするような事態には、凝固因子や血小板数の低下による出血傾向(希釈性の凝固障害と血小板減少)が起こる可能性があるので、凝固系や血小板数の検査値及び臨床的な出血傾向を参考にして、新鮮凍結血漿や血小板濃厚液の投与も考慮する。"と記載されており、かなりの大量出血に遭遇した場合にのみ、FFPや PC 輸血が考慮されることとなる。これに比して、大量出血による急性消費性、希釈性凝固障害の防止、もしくは早期改善を目的とする MTP による治療、すなわち、早期から先制的な FFPや PC 投与が有効である可能性がある。一方、このような輸血療法は、血漿製剤の大量投与に繋がる可能性があることから、急性肺障害や volume overload などの有害事象が引き起こされる懸念がある。したがって、MTP が推奨できるかどうか、また、推奨できる場合には、FFP: PC: RCC の最適投与比はどれくらいかを検討する。

重要臨床課題 3:「PCC や rFVIIa」

重度の止血困難例において、上述した治療法でも効果が認めらない場合、PCCや rFVIIaの投与が有効であったとの報告がある。一方、これらの投与は重篤な血栓症を引き起こす可能性も指摘されている。よって、大量輸血療法において、PCCや rFVIIaが推奨できるかどうかの検討を行う。その際には、重要臨床課題2で取り上げたフィブリノゲン製剤を含め、PCC、rFVIIaは、本邦において大量出血に伴う急性凝固障害に対する薬事承認がないことについての留意が必要となる。

重要臨床課題4:「抗線溶療法」

鈍的外傷などによる大量出血症例では、初期から組織損傷による組織因子/凝固第 VII 因子複合体形成を契機とする消費性凝固障害に加えて、thrombin-thrombomodulin 反応、血管内皮障害、炎症などを契機として、線溶亢進が起こることが指摘されている。よって、大量出血症例に対する抗線溶療法(特に早期からの開始による)の有効性が報告されており、外傷領域では、大規模 RCT によりその有効性が報告された。一方、抗線溶療法は血栓塞栓症や腎障害を来す可能性、抗線溶療法の中心となるトラネキサム酸は痙攣を誘発する可能性も指摘されている。大量出血症例において抗線溶療法は推奨できるかどうかの検討は、血液製剤の使用削減につながり得る治療としても重要である。

8. Clinical question (CQ) リスト

重要臨床課題1:「フィブリノゲン製剤(フィブリノゲン濃縮製剤もしくはクリオプレシピテート)」

CQ1: 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

重要臨床課題 2: 「大量輸血プロトコール (MTP)」

CQ2:大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また, FFP:PC:RCCの 最適投与比はどれくらいか?

重要臨床課題 3:「PCC や rFVIIa」

CQ3: 大量輸血療法において PCC や rFVIIa の投与は推奨されるか?

重要臨床課題 4:「抗線溶療法」

CQ4: 大量出血症例において抗線溶療法は推奨されるか?

それぞれの CQ について、心臓血管外科、外傷、産科、その他の 4 領域に分けて推奨文を作成した。また、それぞれの CQ についての推奨掲載順は、エビデンスの強い領域から記載することとした(臨床においては、エビデンスの強い領域における対応が、他の領域の clinical practices に強い影響を与えている可能性があることを考慮した).

9. ガイドライン本文

CQ1:大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

【心臓血管外科】CQ1 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

1) Recommendation

血漿フィブリノゲン値<150mg/dlを来す低フィブリノゲン血症では、出血量や同種血製剤の使用量が増加する(エビデンスレベル:B). 複雑な心臓血管外科手術に関連する大量出血患者に対して、フィブリノゲン濃縮製剤あるいはクリオプレシピテートを用いた止血管理をおこなうことを弱く推奨する(推奨度:2C).フィブリノゲン濃縮製剤の初期用量として、50mg/kg程度を弱く推奨する。また、クリオプレシピテートの初期用量として、3~4ml/kg程度を推奨する(推奨度:2C).

出血量軽減や同種血製剤削減を目的に、また、フィブリノゲン濃縮製剤やクリオプレシピテートの投与量決定には、血漿フィブリノゲン値または全血フィブリノゲン値や Viscoelastic device (血液粘弾性検査) などの Point-of-care (POC) テストを用いたモニタリングを強く推奨する (推奨度:1B).

2) 推奨文の具体的な解説

複雑な心臓血管外科手術では、輸液製剤の投与量増加や長時間の体外循環に起因して、高度の血液希釈が惹起される。各種凝固因子は全般性に低下するが、トロンビン生成は比較的に保たれる傾向にある¹¹. 一方、フィブリノゲンの低下から生じるフィブリン産生障害は凝固異常の主因となりやすいことから、フィブリノゲン補充療法の重要性が指摘されている²¹³. FFPによる補充療法では、製剤内のフィブリノゲン値は献血ドナーによりばらつきが大きく、投与される製剤容量とその希釈効果から、短時間で効率的にフィブリノゲン濃度を上昇させることが難しい。これに比較して、フィブリノゲン濃縮製剤とクリオプレシピテートは、容量あたりに含まれるフィブリノゲン量が高く、効率的なフィブリノゲンの補充が可能である³¹.

心臓外科手術を対象とした研究では、フィブリノゲン濃縮製剤の予防的投与の有効性を示すものもあるが⁴⁾⁵⁾、人工心肺離脱後の止血異常に対する治療的投与を評価した研究が大部分を占めており^{6)~13)}、現状では予防的な介入を積極的に試みるエビデンスには乏しい. 心臓血管外科手術患者において、フィブリノゲン濃縮製剤による生存率の改善効果は明らかではないが、出血量や赤血球輸血量の削減効果にはエビデンスを認めている¹³⁾. 心臓血管外科患者は血栓症の高リスク群であることから、凝固因子濃縮製剤の投与に伴う血栓性有害事象が危惧される¹⁴⁾. しかしながら、フィブリノゲン濃縮製剤の投与によって血栓塞栓症の発生率は増加せず、安全性が高い製剤であることが示されている¹³⁾¹⁵⁾. 一方、心臓血管外科手術の大量出血患者では抗凝固因子も同様に低下傾向を呈するため、凝固因子と抗凝固因子をバランス良く補充可能な新鮮凍結血漿は、依然として重要な治療選択肢であることには変わりない. したがって、凝固障害の原因(アシドーシス、低カルシウム血症、低体温、低血小板数)を是正し、さらには適正量の新鮮凍結血漿を投与しても制御できない人工心肺後のような止血障害に対しては、フィブリノゲン濃縮製剤やクリオプレシピテートを適用する臨床対応が合理的と考えられる¹⁶⁾.

心臓血管外科手術において、フィブリノゲン補充療法にPOCテストを組み入れた輸血アルゴリズムを用いた止血管理は、従来からの経験的な止血対応に比較して、同種血製剤の削減効果が高いことが報告されてい

る「ハーンニン). POC テストを活用することで遅滞ない止血管理介入が可能となり、このことはフィブリノゲン補充療法の最適化に寄与する可能性が高い. 過去の多くの研究で Viscoelastic device (血液粘弾性検査) による間接的フィブリン粘弾性を用い、製剤投与量の決定や効果判定をおこなっているが、本邦では Viscoelastic device の普及は一部の医療機関に留まっているため、血漿または全血フィブリノゲン値を用いた管理が現実的かもしれない. フィブリノゲン濃縮製剤の投与量の決定には、

フィブリノゲン濃縮製剤の必要量 (g) = ([目標フィブリノゲン値 (mg/dl)] - [治療前のフィブリノゲン値 (mg/dl)])/100 × 0.07 × ([100 - ヘマトクリット値]/100) × 体重 (kg)

という予測式の活用が便宜的であるが²³⁾、症例により生体利用率や持続する出血状況は異なるため、製剤投与後にもフィブリノゲン値を再検し、その効果判定を行うことが重要である。フィブリノゲンのターゲット値にも左右されるが、6~8g/回の高用量のフィブリノゲン濃縮製剤を適用した臨床研究も報告されている $^{6)\sim 9/24}$. また、200mg/dl 前後の血漿フィブリノゲン値を境にして赤血球輸血製剤の使用量が増加するというデータが示されているが $^{25/26}$ 、現状では最適なターゲット値が明らかでない 27 . そのため、フィブリノゲンのトリガー値を 150mg/dl 程度に設定し、50mg/kg 程度のフィブリノゲン濃縮製剤、または $3\sim 5$ バック($3\sim 4$ ml/kg)程度のクリオプレシピテート(日本輸血・細胞治療学会策定のクリオプレシピテート作製プロトコールを参照:http://yuketsu.jstmct.or.jp/wp-content/uploads/2016/11/be64675762b20d703527c3d9a19ccac6.pdf)から開始し、投与後の止血状況に応じたフィブリノゲン値の管理を行うことが合理的であろう。

フィブリノゲン濃縮製剤の同種血削減効果については、各試験の結果で差異を認めているが、過去の研究では十分な症例数に達していないものや、単一施設研究であるものが多く見受けられた。最近になり、大規模なランダム化比較試験結果が2編報告されたが $^{23(24)}$ 、この1つは国際共同による第3相臨床試験であった 24)、先行研究の結果に反して、これら2研究ではフィブリノゲン濃縮製剤による同種血製剤の削減効果が明らかとはならなかった。しかしながら、大量出血患者を対象とした国際的多施設共同ランダム化比較試験は介入基準の設定と輸血プロトコールの逸脱などに課題が残されており、製剤の有効性を検証するにはさらなるエビデンス集積が待たれる。

3) Practice points

現状では、クリオプレシピテートは各医療機関が新鮮凍結血漿を用いて院内作製することによってのみ使用可能であるため、院内の体制整備を確立する必要がある。調製法による濃縮効率や、保管方法による製剤安全性の差異が及ぼす影響も無視できないが、導入に際しては日本輸血・細胞治療学会が作成した「クリオプレシピテート作製プロトコール」(http://yuketsu.jstmct.or.jp/wp-content/uploads/2016/11/be64675762b20d703527c3d9a19ccac6.pdf)を参照されたい²⁸⁾. AB型の新鮮凍結血漿 480ml(アフェレーシス)製剤を用いて作製する施設が少なくないが、血液製剤の有効活用の観点から、同血液型の新鮮凍結血漿や 240ml 製剤を作製に使用することも考慮されたい。クリオプレシピテートは、フィブリノゲンの他にも、生体止血に重要な働きをする von Willebrand 因子や第 XIII 因子を高濃度に含有していることから、厳密にはフィブリノゲン濃縮製剤と同等ではない。しかしながら、心臓血管外科領域におけるクリオプレシピテート単独のエビデンスは不足している「12)29).

したがって、各施設が状況を鑑みて、フィブリノゲン濃縮製剤あるいはクリオプレシピテートのどちらをフィブリノゲン補充手段として活用するのが望ましいのか、十分な事前議論を要する現況にある.

4) Summary of evidence

① meta-analysis

Study	Study type	Population	Intervention	Comparator	Outcomes
Gielen,	メタ解析.	心臓外科手術患者を	N/A	N/A	術前の血漿フィブリノゲン値
2014		対象にした, 出血量と			と術後出血量は, -0.40 (95%)
		フィブリノゲン値を			CI: -0.58, -0.18) Ø pooled
		調査したコホート研			correlation で関係性が認めら
		究または観察研究を			れた. 術後の血漿フィブリノゲ
		対象に解析. 20研究			ン値と術後出血量は, -0.23
		の内訳は、術前の血漿			(95 % CI: -0.29, -0.16) の
		フィブリノゲン値と			pooled correlation で関係性が
		術後出血量の関連を			認められた. フィブリノゲン濃
		調査した9研究, 術後			縮製剤やクリオ製剤の投与が
		の血漿フィブリノゲ			術後出血量を減ずるか否かは
		ン値と術後出血量の			本結果から不明ではあるが,
		関連を調査した 16 研			フィブリノゲン補充療法の有
		究であった.			効性を間接的に支持する.

② RCT

(2) RC	1				
Study	Study type	Population	Intervention	Comparator	Outcomes
Rahe-	RCT,				プラセボ群に比較して, フィブ
Meyer,	single center.				リノゲン製剤群において24時
2013		大動脈置換術が予定		ボ群 (n=32).	間総輸血量[中央値:13(8~
		された 18 歳以上の患			21) vs 2 (0~8) 単位], 赤血球
		者.	ブリノゲン濃縮		輸血量 [2 (2~5) vs. 0 (0~2)
			製剤を投与する		単位] は有意に低かった. ま
			(n=29). 投与量		た, フィブリノゲン群で同種血
			はROTEMガイ		製剤が回避された患者割合は
			ダンスにより決		45%に対し、プラセボ群では
			定され、中央値		0%であり、フィブリノゲン製
			8g (IQR : 6∼		剤による高い同種血削減効果
			9g) であった.		が示された.
Rannuci,	RCT,				プラセボ群に比較して, フィブ
2015	single center.				リノゲン製剤群で同種血製剤
		る, 複雑心臓手術症例		ボ群 (n=58).	が投与された割合は有意に低
		が予定された 18 歳以			かった [odds ratio (OR), 0.40
		上の心臓患者.	(3~6)g]が決定		(0.19~0.84)]. 術後出血量は,
			されたフィブリ		フィブリノゲン製剤群におい
			ノゲン製剤を投		て有意に低下した(Median;
			与する(n=58).		$300 (200 \sim 400) \text{m}l \text{ vs. } 355 (250)$
					\sim 600) m l).
Bilecen,	RCT,				プラセボ群に比較して, フィブ
2017	single center.				リノゲン製剤群で24時間のド
			_	_	レーン出血量が有意に低下し
					た (690 vs. 570ml; -120ml).
		ど)が予定された成人			術中の同種血製剤使用量
		患者.			(Median, SD) は2±3 vs 4±7
			(n=60). 投与量	[60].	単位, RCC 使用量が 0 vs 3±5
			は血漿フィブリ		単位で、フィブリノゲン製剤群
			ノゲン値により		で少ない傾向を認めた.
			決定され、平均		
			値3.1gであった.		

③観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Ranucci,	観察研究,	人工心肺手術が施行	術後の胸腔ド	術後の胸腔ド	集中治療室入室時の血漿フィ
2016	single center.	された 2,800 名の成人	レーン出血量が	レーン出血量が	ブリノゲン値と術後出血量に
		患者を対象に, 集中治	1,000ml/12hr 以	1,000m <i>l</i> /12hr 未	は、R2:0.043; (p=0.001) で
		療室入室時の血漿	上であった,	満であった,	有意な相関関係があった.
		フィブリノゲン値と	Severe bleed-	Non-severe	Non-SB 群と SB 群の血漿フィ
		術後出血量との関連	ing (SB) 群 131	bleeding (Non-	ブリノゲン値(中央値)は、そ
		を評価したもの.	名.	SB) 群 2,669 名.	れぞれ 254mg/d/, 216mg/d/で
					あった. 低フィブリノゲン血症
					≤220mg/d/ は術後 SB の予測
					因子となるOR 2.25 (1.54~
					3.28)].

文 献

- 1) Ogawa S, Szlam F, Chen EP, et al: A comparative evaluation of rotation thromboelastometry and standard coagulation tests in hemodilution-induced coagulation changes after cardiac surgery. Transfusion, 52: 14—22, 2012.
- 2) Gielen C, Dekkers O, Stijnen T, et al: The effects of pre-and postoperative fibrinogen levels on blood loss after cardiac surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg, 18: 292—298, 2014.
- 3) Levy JH, Welsby I, Goodnough LT: Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion, 54: 1389—1405; quiz 8, 2014.
- 4) Karlsson M, Ternstrom L, Hyllner M, et al: Prophylactic fibrinogen infusion in cardiac surgery patients: effects on biomarkers of coagulation, fibrinolysis, and platelet function. Clin Appl Thromb Hemost, 17: 396—404, 2011.
- 5) Jahangirifard A, Ahmadi ZH, Naghashzadeh F, et al: Prophylactic Fibrinogen Decreases Postoperative Bleeding but Not Acute Kidney Injury in Patients Undergoing Heart Transplantation. Clin Appl Thromb Hemost, 24: 998—1004, 2018.
- 6) Rahe-Meyer N, Pichlmaier M, Haverich A, et al: Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study. Br J Anaesth, 102: 785—792, 2009.
- 7) Rahe-Meyer N, Solomon C, Winterhalter M, et al: Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg, 138: 694—702, 2009.
- 8) Rahe-Meyer N, Solomon C, Hanke A, et al: Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology, 118: 40—50, 2013.
- 9) Rahe-Meyer N, Hanke A, Schmidt DS, et al: Fibrinogen concentrate reduces intraoperative bleeding when used as first-line hemostatic therapy during major aortic replacement surgery: results from a randomized, placebo-controlled trial. J Thorac Cardiovasc Surg, 145: S178—S185, 2013.
- 10) Tanaka KA, Egan K, Szlam F, et al: Transfusion and hematologic variables after fibrinogen or platelet transfusion in valve replacement surgery: preliminary data of purified lyophilized human fibrinogen concentrate versus conventional transfusion. Transfusion, 54: 109—118, 2014.
- 11) Yamamoto K, Usui A, Takamatsu J: Fibrinogen concentrate administration attributes to significant reductions of blood loss and transfusion requirements in thoracic aneurysm repair. J Cardiothorac Surg, 9: 90, 2014.
- 12) Galas FR, de Almeida JP, Fukushima JT, et al: Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial. J Thorac Cardiovasc Surg, 148: 1647—1655, 2014.
- 13) Fominskiy E, Nepomniashchikh VA, Lomivorotov VV, et al: Efficacy and Safety of Fibrinogen Concentrate in Surgical Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth, 30: 1196—1204, 2016.
- 14) Williams B, Wehman B, Mazzeffi MA, et al: Acute Intracardiac Thrombosis and Pulmonary Thromboembolism After Cardio-pulmonary Bypass: A Systematic Review of Reported Cas. Anesth Analg, 126: 425—434, 2018.
- 15) Solomon C, Groner A, Ye J, et al: Safety of fibrinogen concentrate: analysis of more than 27 years of pharmacovigilance data. Thromb Haemost, 113: 759—771, 2015.

- 16) Lance MD, Ninivaggi M, Schols SE, et al: Perioperative dilutional coagulopathy treated with fresh frozen plasma and fibrinogen concentrate: a prospective randomized intervention trial. Vox Sang, 103: 25—34, 2012.
- 17) Westbrook AJ, Olsen J, Bailey M, et al: Protocol based on thromboelastograph (TEG) out-performs physician preference using laboratory coagulation tests to guide blood replacement during and after cardiac surgery: a pilot study. Heart Lung Circ, 18: 277—288, 2009.
- 18) Girdauskas E, Kempfert J, Kuntze T, et al: Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: a prospective, randomized trial. J Thorac Cardiovasc Surg, 140: 1117—1124 e2, 2010.
- 19) Weber CF, Gorlinger K, Meininger D, et al: Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology, 117: 531—547, 2012.
- 20) Nakayama Y, Nakajima Y, Tanaka KA, et al: Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth, 114: 91—102, 2015.
- 21) Karkouti K, McCluskey SA, Callum J, et al: Evaluation of a novel transfusion algorithm employing point-of-care coagulation assays in cardiac surgery: a retrospective cohort study with interrupted time-series analysis. Anesthesiology, 122: 560—570, 2015.
- 22) Kawashima S, Suzuki Y, Sato T, et al: Four-Group Classification Based on Fibrinogen Level and Fibrin Polymerization Associated With Postoperative Bleeding in Cardiac Surgery. Clin Appl Thromb Hemost, 22: 648—655, 2016.
- 23) Bilecen S, de Groot JA, Kalkman CJ, et al: Effect of Fibrinogen Concentrate on Intraoperative Blood Loss Among Patients With Intraoperative Bleeding During High-Risk Cardiac Surgery: A Randomized Clinical Trial. JAMA, 317: 738—747, 2017.
- 24) Rahe-Meyer N, Levy JH, Mazer CD, et al: Randomized evaluation of fibrinogen vs placebo in complex cardiovascular surgery (REPLACE): a double-blind phase III study of haemostatic therapy. Br J Anaesth, 117: 41—51, 2016.
- 25) Karkouti K, Callum J, Crowther MA, et al: The relationship between fibrinogen levels after cardiopulmonary bypass and large volume red cell transfusion in cardiac surgery: an observational study. Anesth Analg, 117: 14—22, 2013.
- 26) Ranucci M, Pistuddi V, Baryshnikova E, et al: Fibrinogen levels after cardiac surgical procedures: association with postoperative bleeding, trigger values, and target values. Ann Thorac Surg, 102: 78—85, 2016.
- 27) Yang L, Vuylsteke A, Gerrard C, et al: Postoperative fibrinogen level is associated with postoperative bleeding following cardiothoracic surgery and the effect of fibrinogen replacement therapy remains uncertain. J Thromb Haemost, 11: 1519—1526, 2013.
- 28) 日本輸血・細胞治療学会. クリオプレシピテート作製プロトコール Ver 1.4. http://yuketsujstmctorjp/medical/guidelines/(2018 年 12 月現在)
- 29) Lee SH, Lee SM, Kim CS, et al: Use of fibrin-based thromboelastometry for cryoprecipitate transfusion in cardiac surgery involving deep hypothermic circulatory arrest during cardiopulmonary bypass. Blood Coagul Fibrinolysis, 21: 687—691, 2010.

【産科】CQ1 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

1) Recommendation

妊産褥婦の大量出血症例に対してクリオプレシピテート,フィブリノゲン濃縮製剤投与は有用であり,その使用が提案される(2C).

血漿フィブリノゲン濃度 150~200mg/dl が、投与のタイミングとして提案される (2C).

2) 推奨文の具体的な解説

産科領域における大量出血では、出血量が過小評価されやすいという問題点が指摘されており一概に出血量だけでは定義することができない。従ってガイドラインでの産科大量出血とは、生命に危機が切迫し輸血治療を含めた集約的治療が必要である、いわゆる「産科危機的出血」の患者をさす。分娩時に発生する産科大量出血は、常位胎盤早期剥離、前置胎盤、羊水塞栓症、弛緩出血などが原因疾患であり、前置胎盤を除けば、いずれも分娩前にその発生を予測することが困難な病態である。現在わが国では約半数の分娩が診療所で行われており、マンパワーが十分とはいえない施設でも、多くの産科大量出血が発生していることになる。分娩時大量出血で心停止した産婦の70%以上は、発症から3時間以内に心停止に至っており、対応の遅延が母体生命の危機に繋がる病態であるため、迅速な対応が肝要となる。また産科大量出血では、比較的少量の出血で凝固障害が発生することもすでに知られている。こうした産科大量出血に対して、クリオプレシピテート、フィブリ

ノゲン濃縮製剤の投与の有効性について検討した. 分娩時出血に対するフィブリノゲン濃縮製剤補充に関する 有効性を検討した RCT は2報認める、Wikkels らの多施設共同無作為二重盲検プラセボ対照試験は、経腟分 娩での出血量 500ml 以上,帝王切開での出血量 1,000ml 以上で,適格基準を満たした 249 名の被検者を対象と した¹⁾. プラセボとフィブリノゲン濃縮製剤 2g を無作為に割り付けて投与した. 産後 6 週間までの輸血率を 主要評価項目として比較検討した. 副次評価項目は総出血量, 総輸血量, 再出血の発生, Hb<5.8g/dJ, 4時 間, 24 時間, 7 日以内の赤血球製剤(RCC)輪血量とした. フィブリノゲン群の輸血率は 20% でプラセボ群 に比べ相対危険率 0.95 [95% confidence interval CI: 0.58~1.54; P=0.88] と有意差を認めなかった. さら に、いずれの副次評価項目も、有意差を認めなかった。しかし被験者に血栓性のイベントは記録されなかっ た. Collins らの多施設共同無作為二重盲検プラセボ対照試験は、分娩時出血量が 1,000~1,500ml の産婦 3,894 名に対し試験の適格性を検討した². 適格であり同意が取得できた 663 名のうち, 出血が持続し thromboelastography の Fibtem A5 が 15mm 未満となった 55 名の被験者をフィブリノゲン濃縮製剤とプラセボに無作為 に割り付けた. 主要評価項目は、輸血された RCC, 血漿, クリオプレシピテート, 血小板製剤の単位数であっ た.フィブリノゲン群の輸血量をプラセボ群と比較した調整輸血単位数比は 0.72, P 値は 0.45 で有意差を認め なかった. さらにサブ解析では、Fibtem A5 が>12mm または血漿フィブリノゲン濃度>200mg/ml では、 フィブリノゲン濃縮製剤投与の有効性は認めなかった. しかし, これら RCT のタイトルに "pre-emptive treatment", "early fibrinogen concentrate replacement" とあるように, これらの試験の対象となった患者 群は重度の凝固障害を併発している産科大量出血に対するフィブリノゲン濃縮製剤投与の有効性を検証する ための適格条件ではない¹¹². この領域における大量出血例に対する RCT をデザインすることの難しさを物 語っており, 高度に凝固因子が低下している大量出血例に対するクリオプレシピテート, フィブリノゲン濃縮 製剤の投与の有効性を検討した RCT は,現在までのところ存在しない.

一方,観察研究で,産科出血に対するフィブリノゲン濃縮製剤の治療効果を比較した研究は2報みられる. Matsunaga らの報告では 3 ,RCC 輸血量によって分類された重症群でフィブリノゲン製剤投与は,出血量には 差はみられていないが,FFP 輸血量に有意な削減効果が認められている. またフィブリノゲン製剤投与群で FFP/RCC の低下がみられた. さらに他の検討では,フィブリノゲン製剤使用による総輸血量の低下 4 などの 有用性を示している.

介入研究、観察研究を合わせて、最も重大なアウトカムである死亡率に関する比較検討を行った研究は存在しなかった。出血量に関しては、介入研究は2研究で $^{1)2)}$ 、出血量の軽減効果は認められていない。観察研究も1研究で $^{3)}$ 、出血量の軽減効果は認められていない。輸血必要量については、介入研究でRCC 輸血量の削減効果を認めない結果となっており $^{3)}$ 、観察研究ではフィブリノゲン製剤の投与でRCC 輸血量の減少を認めたという報告が1報 3 、コントロール群と比較し輸血総量の削減効果が認められたと報告されているものが1 報 4 に認められた。介入研究では産科大量出血に対するフィブリノゲン製剤の止血効果は認めなかったが、観察研究では効果が確認された。製剤投与に関連する有害事象(肺水腫の発症頻度)は観察研究1 報で発症頻度の低下を認めた3。さらにクリオプレシピテートとフィブリノゲンの濃縮製剤との効果を比較した報告では、両者には効果の差は認めなかった50.

一方、大量出血を予知する凝固系検査法を比較した観察研究が1報みられる。産後出血 $1,000\sim1,500$ mlの 356 例で、大量出血を予測する Thromboelastography の Fibtem、血漿フィブリノゲン濃度を比較した検討では、Fibtem 値がフィブリノゲン濃度より有用性が高いことを示した 6)。この研究では、Fibtem A5<10mm、フィブリノゲン濃度<200mg/dlは、止血までの時間、侵襲的止血手技、HDU(high-dependent unit)への入院期間、早期輸血と関連することが示された。

しかし産科領域における大量出血症例に対して、これらの指標をもとに凝固因子製剤投与のタイミングを設定し、その有用性を検討した介入研究は存在しない。観察研究によるクリオプレシピテート、フィブリノゲン 濃縮製剤投与の有用性を検討した報告 304 では、血漿フィブリノゲン濃度 150 あるいは 200 mg/ml が投与開始のタイミングと使用されて有用性を示していることから、投与開始のタイミングは、フィブリノゲン濃度 $150 \sim 200 \text{mg/ml}$ が提案される.

他のガイドラインにおける推奨:

フィブリノゲン値 100 mg/dl では、通常不十分で、最近のエビデンスを統合すると 150 mg/dl を超える濃度が必要とされる。より高い濃度はより凝固障害を改善させる。フィブリノゲン濃縮製剤を用いることで、より迅速に確実にフィブリノゲン濃度の補正が可能となる。 $30 \sim 60 \text{mg/kg}$ を投与する 7 .

産科大量出血の血漿フィブリノゲン濃度は,200mg/dl以上を維持すべきで検査結果を待たずに赤血球製剤,フィブリノゲン製剤,新鮮凍結血漿を投与すべきである⁸.

観察研究の結果、産科大量出血の管理中、血漿フィブリノゲン濃度 100~150mg/dl は、止血を得るには低すぎると考える。さらに血漿フィブリノゲン濃度 300mg/dl 未満、特に 200mg/dl 未満は出血の持続との関連がみられるため、産科大量出血の管理中は、血漿フィブリノゲン濃度を 200mg/dl 以上に保つべきである⁹.

3) Practice points

フィブリノゲン濃縮製剤は管理や使用法は新鮮凍結血漿 (FFP) に比べて容易であり、マンパワー不足や医療資源の乏しい施設での使用にも適している。産科大量出血はクリニックでも発生するなど予期することができず、緊急対応を求められる病態である。適用可能性が高いフィブリノゲン濃縮製剤は、こうした場合でも有用性が高いことから、使用が考慮される。またフィブリノゲン濃度測定の時間は、施設間で差がみられるが結果が出るまで時間がかかることを考慮すると、フィブリノゲン濃度<200mg/dlで、投与開始も考慮される。クリオプレシピテートは施設での調製が必要であり、FFPと同等の管理が必要となるため、すべての分娩施設で使用することは現実的ではない。しかし融解時間がFFPに比べて短く、緊急時の対応は優れていることから、製剤調製を行っている施設では産科大量出血時に使用することは考慮される。

4) Summary of evidence

① RCT

	_				
Study	Study type	Population	Intervention	Comparator	Outcomes
Wikkelsø,	PPH での	産科患者	フィブリノゲン	プラセボ群 121	産後6週間の追跡期間中の赤血
2015	fibrinogen O	全249人の被験者が	群 123 例	例	球輸血は、フィブリノゲン群25
	RCT	無作為化され,244人	フィブリノゲン	生理食塩水が手	例(20.3%)およびプラセボ群
		が6週間までの輸血	群には、100ml	術室の麻酔医に	26例(21.5%)に投与された(相
		必要量に関する最終	の滅菌水に溶解	よって投与され	対リスク 0.95;95% CI 0.58~
		分析が可能であった.	された2gの	た. N=119	1.54 ; P = 0.88).
		プラセボ群 121 例	フィブリノゲン		新鮮凍結血漿または血小板を
			濃縮製剤の固定		受けた被験者はいなかった.
			用量が投与され		フィブリノゲン投与後の推定
			た.		出血量(ml)はフィブリノゲン
					1,700 [1,500~2,000] プラセボ
					$[1,700 [1,400 \sim 2,000], P = 0.37]$
					輸血の必要性(試験薬物投与後
					4 時間まで)P=0.11
					RCC 輸血量の必要性 (治験薬投
					与後 24 時間まで)P=0.35
					RCC 輸血の必要性 (治験薬投与
					後7日以内) P=0.88
					注) "pre-emptive treatment"
					とあるように、これら RCT は
					凝固障害を併発している産科
					大量出血に対するフィブリノ
					ゲン濃縮製剤投与の有効性を
					検証するための適格条件では
					ない.

Collins,	多施設共同無	分娩時出血量が 1,000	Fibtem A 5 が	プラセボ群	フィブリノゲン群の輸血量を
2017		~1,500mlの 産 婦			プラセボ群と比較した調整輸
		3,894 名に対し試験の			血単位数比は 0.72. P 値は 0.45
		適格性を検討した.適			で有意差を認めなかった。さら
	1	格であり同意が取得			にサブ解析では、Fibtem A5が
		できた663名のうち、			>12mm または血漿フィブリ
		出血が持続し throm-			ノゲン濃度>200mg/ml では,
		boelastography O			フィブリノゲン濃縮製剤投与
		FibtemA5 が 15mm			の有効性は認めなかった.
		未満となった 55 名の			Fibtem A5が12mm以下また
		被験者			はClauss 法による fibrinogen
					値が2g/1以下の場合, 同種血輸
					血量、出血量、重症となった症
					例は, いずれもフィブリノゲン
					濃縮製剤投与患者群で少ない
					傾向にあったが, 症例数が期待
					したより少なく、有意差はな
					かった.
					注) "early fibrinogen concen-
					trate replacement"とあるよう
					に、これら RCT は凝固障害を
					併発している産科大量出血に
					対するフィブリノゲン濃縮製
					剤投与の有効性を検証するた
					めの適格条件ではない(消費性
					凝固障害を起こしフィブリノ
					ゲン値が2g/lを切りやすい羊
					水塞栓症の患者は、本試験から
					除外).

②観察研究

少 既芬	初九				
Study	Study type	Population	Intervention	Comparator	Outcomes
Collins,	prospective	産科患者	RCC:FFP:PC	クリオプレシピ	Fibtem A5 が 10mm 未満であ
2014	maltivariate	調査中に 6,187 の分娩	赤血球 (RCC)	テート	ることは出血の継続に関係し
	analysis	があった.449人(7%)	は、POCT に基		ていた. (median [95% CI],
		が適格基準を満たし,	づいてヘモグロ		$127 [44 \sim 210] \text{ vs } 65 [59 \sim 71]$
		356人の女性 (79%)	ビン(Hb)>79g/		分;P=.018) high-dependency
		が登録された. 9人は	1を維持するよ		unit への長期入院にも関連し
		データが部分的で	うに輸血され		ていた (23.5 [18.4~28.5] vs
		あったため除外され	た. RCC, 新鮮		10.8 [9.7~11.8] 時間).
		た.	凍 結 血 漿		合計8単位の輸血量に到達した
			(FFP), および		患者 (red cell concentrates
			クリオプレシピ		[RCCs] + fresh frozen plasma
			テートの輸血時		[FFP] + platelets) のフィブリ
			間を, 測定され		ノゲンと fibtem A5の中央値は
			た総出血量とと		(括弧内は IQR) それぞれ 2.1
			もに記録した.		$(1.8\sim3.4)$ g/l \succeq 12 (7 \sim 17)
					mm, 到達しなかった患者では
					それぞれ3.9 (3.2~4.5) と19
					(17~23) であった.
					多変量解析では, Fibtem は
					2,500ml を超える出血への独立
					した予測因子であった(95%信
					賴区間[CI], 0.85[0.77~0.95]).

Matsunaga,	後ろ向き観察	137 名	積極的な凝固因	FFP投与のみ	出血量は,全体の群間比較,重
2017	研究	産科出血による重症	子補充療法とし	(フィブリノゲ	症群 (RCC18単位以上を必要と
	fibrinogen	凝固障害fibrinogen	てFFPに加え	ン製剤投与され	した群間比較), RCC10 単位以
	150mg/d/以下	値150mg/d/以下の上	てフィブリノー	ず)	下を必要とした常位胎盤早期
			ゲン濃縮製剤を		剝離での群間比較のいずれで
	る FFP のみの		投与した. 使用		も、出血量に有意差を認めな
	治療と FFP+		した初期用量は		かった.
	フィブリノゲ		3gであった.		輸血必要量は、全体の群間比
	ン濃縮製剤に		フィブリノーゲ		較,重症群(RCC18単位以上を
	よる治療の投		ンレベルを15		必要とした群間比較), RCC10
	与効果		分後に測定し,		単位以下を必要とした常位胎
			それが150mg/		盤早期剝離での群間比較のい
			dl未満の場合		ずれでも、RCC 輸血量に有意差
			は, さらに3g投		を認めなかった.
			与した. 投与後		全体の群間比較では、FFP/
			フィブリノゲン		RCC のみに有意差を認めた.
			レベルを再検		重症群 (RCC18単位以上を必要
			し, 最大で6gの		とした群間比較), RCC10 単位
			フィブリノゲン		以下を必要とした常位胎盤早
			濃縮製剤の投与		期剝離での群間比較では FFP
			を行った.		投与量と FFP/RCC に有意差を
					認めた.
					RCC18単位以上を使用した重
					症群でのF+F (fibrinogen 投
					与群) では肺水腫の発生頻度が
					有意に低かった.

文 献

- 1) Wikkelsø AJ, Edwards HM, Afshari A, et al: Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage: randomized controlled trial. Br J Anaesth, 114: 623—633, 2015.
- 2) Collins PW, Cannings-John R, Bruynseels D, et al: Viscoelastometric-guided early fibrinogen concentrate replacement during postpartum haemorrhage: OBS2, a double-blind randomized controlled trial. Br J Anaesth, 119: 411—421, 2017.
- 3) Matsunaga S, Takai Y, Nakamura E, et al: The clinical efficacy of fibrinogen concentrate in massive obstetric haemorrhage with hypofibrinogenaemia. Sci Rep. 7: 46749, 2017.
- 4) Mallaiah S, Barclay P, Harrod I, et al: Introduction of an algorithm for ROTEM-guided fibrinogen concentrate administration in major obstetric haemorrhage. Anaesthesia, 70: 166—175, 2015.
- 5) Ahmed S, Harrity C, Johnson S, et al: The efficacy of fibrinogen concentrate compared with cryoprecipitate in major obstetric haemorrhage-an observational study. Transfus Med, 22: 344—349, 2012.
- 6) Collins PW, Lilley G, Bruynseels D, et al: Fibrin-based clot formation as an early and rapid biomarker for progression of post-partum hemorrhage: a prospective study. Blood, 124: 1727—1736, 2014.
- 7) Blood transfusion and the anaesthetist: management of massive haemorrhage. (Association of Anaesthetists of Great Britain and Ireland) https://www.aagbi.org/sites/default/files/massive_haemorrhage_2010_0.pdf(2018年12月現在)
- 8) Sentilhes L, Vayssiere C, Deneux-Tharaux C, et al: Postpartum hemorrhage: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF): in collaboration with the French Society of Anesthesiology and Intensive Care (SFAR). Eur J Obstet Gynecol Reprod Biol, 198: 12—21, 2016.
- 9) Royal College of Obstetricians and Gynaecologists. (2016) Postpartum Haemorrhage, Prevention and Management (Green-top 52). RCOG, London. https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg52/(2018 年 12 月現在)

【外傷】CQ-1 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また,輸注開始トリガー値はどれくらいか?

1) Recommendation

血漿フィブリノゲン<150mg/dlを伴う外傷による大量出血患者に対して、クリオプレシピテートあるいは

フィブリノゲン濃縮製剤を投与することを弱く推奨する (2C). ただし、フィブリノゲン濃縮製剤は外傷による後天性低フィブリノゲン血症患者に対する保険適応はなく、クリオプレシピテートは各施設の院内調剤によってのみ使用可能であるため、施設体制整備をしておくことが必要である.

2) 推奨文の具体的な解説

大量出血を伴う外傷患者では、フィブリノゲンがもっとも早期に低下する¹⁾. そして、フィブリノゲンは "しっかりとした凝血塊" 形成 = clot firmness のための重要な凝固因子である²⁾. しかし、重症外傷患者のフィブリノゲンは、消費や希釈のみにより減少するのではなく、外傷に伴う線溶亢進により産生されたプラスミンにより、フィブリノゲンそのものの分解が関連する可能性がある^{3)~5)}. これらのことから、重症外傷患者に対する早期からのフィブリノゲン補充療法の有用性が期待されている。欧米を中心として、急性低フィブリノゲン血症の補正のためにフィブリノゲン製剤を用いる試みがなされ、米国や英国では主にクリオプレシピテートが使用され、英国を除く欧州では主にフィブリノゲン濃縮製剤が用いられている。

外傷患者においては、大量出血あるいは大量輸血を要することが確認されてからの介入では、凝固系の破綻からの離脱と転帰改善のための十分な効果を期待することできない。そのため、本 CQ においては、重症外傷患者を対象 (P) とした。介入と対照 (I, C) は、クリオプレシピテートあるいはフィブリノゲン濃縮製剤投与の有無をそれぞれ設定し、28日(または30日)死亡率あるいは院内死亡率を主要評価項目とし、輸血必要量、ICU滞在日数、血栓塞栓症および臓器障害発生を副次評価項目とした。

クリオプレシピテートの投与効果に関して採用された3つの論文はすべて観察研究であり、対象に大量出血を呈していない外傷患者が含まれている。また、MATTERs II 研究は戦地外傷患者を対象とした観察研究であった $^{6)\sim8}$. さらに介入がクリオプレシピテート単独ではない研究もあり、深刻な非直接性があり、すべてに深刻なバイアスリスクがあると判断した。クリオプレシピテートの投与と死亡率低下の関連を示した観察研究は 1 編(MATTERs II 研究)のみであり $^{8)}$ 、傾向スコアによる調整オッズ比は 0.61($0.40\sim0.94$)であった。他の 2 編の研究では関連性を認めず、非一貫性を認めた 677 . 輸血必要量に関して採用された論文も MATTERs II 研究のみであり、介入はクリオプレシピテートとともにトラネキサム酸についても検討されており、深刻な非直接性およびバイアスリスクを認めた。クリオプレシピテート投与群における輸血必要量が多かったが、生存バイアスであったことが示唆される。

フィブリノゲン濃縮製剤投与に関して採用された 3 編の論文は、介入が Thromboelastography(TEG)によるプロトコールの一部としての検討であり、プロトロンビン複合体製剤との組み合わせによる介入を検討した論文が含まれていた 9 ~ 11 . フィブリノゲン濃縮製剤単独の評価はドイツレジストリデータからの 1 編だけである 9 . このことから本 CQ に対して深刻な非直接性があると判断した。また、すべての論文に深刻なバイアスリスクを認めた。フィブリノゲン濃縮製剤投与による死亡率への有用性評価は、フィブリノゲン濃縮製剤単独群に対してプロトロンビン複合体製剤と FFP を加えた群の比較であったが、フィブリノゲン単独投与群において死亡率の有意な低下を認めている。輸血必要量、ICU 滞在日数、血栓塞栓症発生の評価に関してもドイツレジストリデータ研究のみが採用となり、深刻な非直接性とバイアスリスクがあるものの群間の差異は明らかでなかった。

輸血必要量に関しては、クリオプレシピテートおよびフィブリノゲン濃縮製剤を評価した観察研究が各1編あるが、前者では深刻なバイアスリスクがあり明らかな関係を示すものではない 810 . 同種輸血回避率を評価した観察研究が1編のみある。深刻なバイアスリスクと非直接性を有する研究であるものの、フィブリノゲン濃縮製剤とプロトロンビン複合体濃縮製剤を組み合わせて投与した群は FFP 単独で投与した群と比較して赤血球輸血を回避できた割合が高い(29% vs 3%, P<0.0001). ICU 滞在日数は研究間の非一貫性が深刻であり、一定の見解を示すことができなかった 10 . 血栓塞栓症および臓器障害合併については、フィブリノゲン濃縮製剤を投与した観察研究が各1編あり、フィブリノゲン濃縮製剤投与群では臓器不全発生率及び多臓器不全発生率が有意に高いものの、血栓塞栓症イベント発生割合に差がなかった 9 . いずれにも深刻なバイアスリスクが認められ、一定の見解を示すことはできない.

システマティック・レビュー検索対象期間後に、出血リスクを伴い凝固異常を認める重症外傷患者を対象として、フィブリノゲン濃縮製剤を中心とした凝固因子濃縮製剤(n=44)と FFP(n=50)を比較する単一施設による RCT が報告されている n=40 を研究の主要評価項目である ICU 入院中における多臓器障害発生には有意差はないものの、フィブリノゲン濃縮製剤を中心とした凝固因子濃縮製剤による凝固異常の迅速な改善による rescue therapy の必要性低下が明らかであることから(FFP:23 [52%] vs フィブリノゲン:2 [4%];

odds ratio [OR] 25.34 [95% CI 5.47~240.03], p<0.0001), 研究は早期に中止と判断された。また,フィブリノゲン濃縮製剤投与による有意な輸血必要量の減少も示されている。外傷患者における投与開始あるいは目標としての至適フィブリノゲン値は明らかでない。非外傷性病態における周術期出血性合併症発生リスクが $150\sim200$ mg/dl 以下で高いことから $^{2)13\rangle\sim17\rangle}$, クリオプレシピテート,フィブリノゲン濃縮製剤投与目標値として $150\sim200$ mg/dl が呈示されている $^{18\rangle}$.

他のガイドラインにおける推奨

これまで、フィブリノゲン血中濃度に関して、100 mg/dl 以上を維持するとの推奨が示されてきたが $^{19)20}$ 、最新のガイドラインでは $150 \sim 200 \text{mg/dl}$ 以下でのフィブリノゲン製剤による補充が推奨されている $^{18)}$. ただし、前述のように、外傷症例における明確な根拠に基づく推奨ではなく、非外傷性病態における周術期出血の合併が $150 \sim 200 \text{mg/dl}$ 以下で多いとの根拠からの設定であり $^{2)13) \sim 17)}$ 、以下のように記されている $^{18)}$.

「トロンボエラストメトリーによるフィブリノゲン機能低下あるいは血漿フィブリノゲン<1.5~2.0g/Iを伴う大量出血例では、フィブリノゲン濃縮製剤あるいはクリオプレシピテート製剤投与を推奨する(IC).」現在、外傷に対する複数の前向き介入試験が進行中であり $^{21)\sim 23}$ 、これらの結果により推奨の変更が生じる可能性がある.

3) Summary of evidence

(1) RCT

		Г	T.		
Study	Study type	Population	Intervention	Comparator	Outcomes
Innerhofer,	単施設におけ	18歳から80歳までの	[FibA10]<9	FFP (15m <i>l</i> /kg)	主要評価項目である ICU 入院
2017	るランダム化	ISS>15の鈍的外傷	mm では、フィ	(n = 44)	中における多臓器障害には有
	比較試験 (par-	で大量出血が予想さ	ブリノゲン濃縮		意差はないものの、フィブリノ
	allel-group,	れる患者. ROTEM	製 剤 (50mg/		ゲン濃縮製剤を中心とした凝
	open-label)	で、10-min value of	kg), [ExCT]>		固因子濃縮製剤による凝固異
		fibrinogen polymeri-	90s でプロトロ		常の迅速な改善による rescue
		sation [FibA10]	ンビン複合体製		therapy の必要性低下が明らか
		<9mm, coagulation	剤 (PCC, 20U/		であることから (FFP:23
		time of ExTEM	kg)		[52%] vs フィブリノゲン:2
		assay [ExCT] >90s	[n=50, 実際,		[4%]; OR 25.34 [95% CI 5.47]
		で定義される外傷に	フィブリノゲン		~240.03], p<0.0001), 研究は
		よる凝固異常を伴っ	製剤は,50症例		早期に中止と判断された. ま
		た患者が対象	(100%) 投与さ		た, フィブリノゲン濃縮製剤投
			れたが、PCC が		与による有意な輸血必要量の
			投与されたの		減少も示されている. 大量輸血
			は,8症例(16%)		が必要な症例は、FFP群で有意
			のみであった]		に高率であった(13 [30%] vs
					6 [12%]; OR 3.04 [0.95~
					[10.87], p = 0.042).

②観察研究

4 観祭		I		-	
Study	Study type		Intervention	Comparator	Outcomes
					対象となった患者ペアの平均
2012					ISS はそれぞれ, 37.6 (FC 群),
		に赤血球輸血を1単	(FC 群)		37.1(非 FC 群)であった.平
		位以上要したか,			均赤血球輸血量は, FC 群 12.8,
	フィブリノゲ	TASHスコア9点以		aalysis (294 ペ	非 FC 群 11.3 単位で差はなかっ
	ン濃縮製剤に	上の患者1,690人		ア)	た. 血栓塞栓症は FC 群の 6.8%
	関する症例対	(フィブリノゲン濃縮			で発生し、非FC群では3.4で
	照研究)	製剤投与 543 人)			あった (P=0.06). 多臓器不全
					については、FC 群で非 FC 群
					よりも多く発生していた
					(61.2% vs 49.0%, P = 0.003).
					来院後6時間の死亡率はFC群
					(10.5%) は非FC群 (16.7%)
					よりも低く (P=003), 死亡ま
					での平均日数は有意に延長し
					た (7.5 vs 4.7, P=0.006). 在院
					死亡率については, 両群間で差
					はなかった (28.6% vs 25.5%,
					P = 0.40).
Morrison,	後ろ向き観察	NATO の外傷レジス	クリオプレシピ	Cryo と TXA が	平均 ISS は, Cryo 群 (28) と
2013	研 究 (MAT-	トリからデータ抽出.	テート製剤	投与されなかっ	TXA+Cryo群 (26) が、TXA
	TERs II study)	アフガニスタンにお	(Cryo) または	た患者 (758人)	群 (23) や非投与群 (21.2) よ
		ける傷病者で, 赤血球	トラネキサム酸		りも有意に高かった (P<
		輸血1単位以上を要			0.001). 死亡率は, TXA+Cryo
		した戦地外傷患者	された患者		群(11.6%)が、TXA群(18.2%),
			(TXAの み:		Cryo 群 (21.4%), 非投与群
			148人, Cryoの		(23.6%) よりも低かった. TXA
			み 168 人, TXA		と Cryo はともに独立して死亡
			+ Cryo: 258人)		率低下と関連していた(TXA
					オッズ比; 0.61, 95%信頼区間:
					0.42~0.89, P=0.01, Cryoオッ
					ズ 比; 0.61, 0.40~0.94, P=
					0.02). TXA と Cryo に有意な
					交互作用は認めないものの,同
					時投与モデルではより死亡率
					低下と関連していた(オッズ
					比: 0.34, 0.20~0.58, P<0.001).
Schochl,	後ろ向き観察	18歳から70歳までの	TEMで凝固異	FFPのみを投	止血治療中に FFP 群 (平均 ISS
2011	研究. フィブ	ISS≥16. 来院時 base	常を認めた場	与していたドイ	35.5) では,6単位(中央値)の
					FFP が投与されていた. FC+
					PCC 群 (平均 ISS 35.2) では,
		四肢 AIS≥3,頭部頸			FC6g と PCC 1,200 単位(とも
	Throm-		トリアの単施	,—,	に中央値)が投与された.赤血
	boerastome-		設)		球輸血回避率は、FC+PCC群
	try (TEM) ガ		/		がFFP群と比較して有意に高
	イド止血療法				かった(29% vs 3%, P<0.001).
	(FC-PCC 群:				血小板輸血回避率も、同様に
	80 症例)				FC-PCC 群で有意に高かった
					(91% vs 56%, P<0.001). 死
					亡率に関しては両群間に差を
					認めなかった (FC+PCC:
					7.5%, FFP: 10%, P=0.69).
	l	<u> </u>	<u> </u>		$[1.070, 1.171 \cdot 1070, 1 - 0.09].$

文 献

- 1) Fries D, Martini WZ: Role of fibrinogen in trauma-induced coagulopathy. Br J Anaesth, 105: 116—121, 2010.
- 2) Charbit B, Mandelbrot L, Samain E, et al: The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. J Thromb Haemost, 5: 266—273, 2007.
- 3) Aoki N, Harpel PC: Inhibitors of the fibrinolytic enzyme system. Semin Thromb Hemost, 10: 24-41, 1984.
- 4) Francis CW, Marder, VJ: Physiologic regulation and pathologic disorders of fibrinolysis. In: Colman RW, Hirsh J, Marder VJ, et al. eds, Hemostasis and Thrombosis, Basic Principles and Clinical Practice, 3rd ed, Lippincott, Philadelphia, 1994, 1076—1103.
- 5) Kushimoto S, Shibata Y, Yamamoto Y: Implications of fibrinogenolysis in patients with closed head injury. J Neurotrauma, 20: 357—363, 2003.
- 6) Rourke C, Curry N, Khan S, et al: Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost, 10: 1342—1351, 2012.
- 7) Holcomb JB, Fox EE, Zhang X, et al: Cryoprecipitate use in the PROMMTT study. J Trauma Acute Care Surg, 75: S31—S39, 2013
- 8) Morrison JJ, Ross JD, Dubose JJ, et al: Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg, 148: 218—225, 2013.
- 9) Wafaisade A, Lefering R, Maegele M, et al: Administration of fibrinogen concentrate in exsanguinating trauma patients is associated with improved survival at 6 hours but not at discharge. J Trauma Acute Care Surg, 74: 387—393, discussion 93—95, 2013.
- 10) Schochl H, Nienaber U, Maegele M, et al: Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care, 15: R83, 2011.
- 11) Schlimp CJ, Voelckel W, Inaba K, et al: Impact of fibrinogen concentrate alone or with prothrombin complex concentrate (+/-fresh frozen plasma) on plasma fibrinogen level and fibrin-based clot strength (FIBTEM) in major trauma: a retrospective study. Scand J Trauma Resusc Emerg Med, 21: 74, 2013.
- 12) Innerhofer P, Fries D, Mittermayr M, et al: Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol, 4: e258—e271, 2017.
- 13) Bell SF, Rayment R, Collins PW, et al: The use of fibrinogen concentrate to correct hypofibrinogenaemia rapidly during obstetric haemorrhage. Int J Obstet Anesth, 19: 218—223, 2010.
- 14) Gerlach R, Tolle F, Raabe A, et al: Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study. Stroke, 33: 1618—1623, 2002.
- 15) Blome M, Isgro F, Kiessling AH, et al: Relationship between factor XIII activity, fibrinogen, haemostasis screening tests and postoperative bleeding in cardiopulmonary bypass surgery. Thromb Haemost, 93: 1101—1107, 2005.
- 16) Ucar HI, Oc M, Tok M, et al: Preoperative fibrinogen levels as a predictor of postoperative bleeding after open heart surgery. Heart Surg Forum 2007; 10: E392—E396.
- 17) Moganasundram S, Hunt BJ, Sykes K, et al: The relationship among thromboelastography, hemostatic variables, and bleeding after cardiopulmonary bypass surgery in children. Anesth Analg, 110: 995—1002, 2010.
- 18) Rossaint R, Bouillon B, Cerny V, et al: The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care, 20: 100, 2016.
- 19) Spahn DR, Cerny V, Coats TJ, et al: Management of bleeding following major trauma: a European guideline. Crit Care, 11: R17, 2007
- 20) Association of Anaesthetists of Great B, Ireland, Thomas D, Wee M, Clyburn P, et al: Blood transfusion and the anaesthetist: management of massive haemorrhage. Anaesthesia, 65: 1153—1161, 2010.
- 21) Aubron C, Reade MC, Fraser JF, et al: Efficacy and safety of fibrinogen concentrate in trauma patients—a systematic review. J Crit Care, 29: 471, e11—e17, 2014.
- 22) Levy JH, Goodnough LT: How I use fibrinogen replacement therapy in acquired bleeding. Blood, 125: 1387—1393, 2015.
- 23) Wikkelso A, Lunde J, Johansen M, et al: Fibrinogen concentrate in bleeding patients. Cochrane Database Syst Rev, 8: CD008864, 2013.

【その他の領域】CQ-1 大量出血症例へのクリオプレシピテート,フィブリノゲン濃縮製剤の投与は推奨されるか?また、輸注開始トリガー値はどれくらいか?

1) Recommendation

心臓血管外科,外傷,産科以外のその他の臨床領域においてフィブリノゲン製剤の使用を推奨する (2C). 最適投与量についてはエビデンスが不足していることから結論を保留する. クリオプレシピテートの有用性についても同様に結論を保留する.

2) 推奨文の具体的な解説

現時点でのわが国の実地診療におけるフィブリノゲン製剤の位置づけとしては、かなりの大量出血に遭遇した場合にのみ考慮されることが多く、早期からの先制的な投与が有効である可能性があり、エビデンス総体として評価する必要がある。一方、血栓症などの有害事象が引き起こされる懸念があり、負のアウトカムも測定されなければならない。本項では心臓血管外科、外傷、産科以外のその他の臨床領域においてクリオプレシピテート、フィブリノゲン製剤の使用が推奨できるかどうか、また、推奨される場合には、最適投与量はどれくらいかを検討することとした。しかしながらこの領域ではよく計画されたRCTや後向き観察研究は決して多くない。

「その他」の領域において、フィブリノゲン濃縮製剤とプラセボとを比較した RCT が存在し、術中にフィブリノゲン濃縮製剤が投与された場合の出血量、輸血必要量が検討されている。これらとフィブリノゲン濃縮製剤が投与されたいくつかの観察研究をあわせてエビデンスの統合を行った。完全股関節形成術患者を対象とした RCT¹⁾では症例数は少ないものの予防的に 30 mg/kg の投与を行ったが輸血必要量は 0.8 単位対 1.06 単位で有意差はなかった。出血量については 976 ml 対 1,100 ml で時間因子を考慮するとフィブリノゲン投与群で低下していた。根治的膀胱切除術 20 例を対象とした RCT²⁾では失血量を 1:1 の割合で HES で補い、30% 希釈となった時に 10 例に対しフィブリノゲン濃縮製剤の投与(45 mg/kg)を行った(プラセボ対照)、輸血必要量はフィブリノゲン投与 10 例中 2 例で輸血が必要だったが、プラセボ投与群では 10 例中 8 例で輸血を必要とした。整形外科手術 66 例の RCT³⁾では HES もしくは Gelatin 投与を行った症例群でフィブリノゲン重合が非常に減少(ROTEM により検討)した症例で 30 mg/kg の投与を行った。ROTEM のパラメータとしての α アングル、血栓強度、フィブリノゲン重合は HES/Gelatin 投与を行った例では対照に比べ低下していた。濃縮フィブリノゲンを投与した例は膠質液群で 13 例、対照群は 0 例であった。また凝固 VII 因子、VIII 因子,IX因子の活性も膠質液群で低下していた。なお ROTEM でみた凝固時間、トロンビン産生の分子マーカーに 3 群で差はなかった。

次に観察研究を検討した.様々な臨床病態にける 223 例の観察研究では、臨床医の判断で FFP とフィブリノゲン濃縮製剤が大量出血例に対し用いられた。出血量中央値 2.01、フィブリノゲン濃度中央値 145mg/kgで治療介入が開始され、フィブリノゲン濃縮製剤の使用量は中央値 4g、FFP によるフィブリノゲンの投与量は中央値 8g であり、フィブリノゲン濃度は終了時に 219mg/dl に増加した。多重ロジスティック回帰分析では、治療後のフィブリノゲン値は生存率に有意なリスク因子となった。脳神経外科領域の待機的開頭術の観察研究。では術後頭蓋内血腫のために外科的治療が必要であった患者群はフィブリノゲン濃度 170mg/dl、それ以外の患者群は 237mg/dl(有意差あり)であった。フィブリノゲン濃度が手術後 200mg/dl より低い場合の術後頭蓋内血腫のオッズ比は 10.02 とされた。大静脈保存法を用いた同所性肝移植患者 190 例に対する観察研究では手術前フィブリノゲンが 200mg/dl 以下の群では手術中の RCC 輸血量が 200mg/dl を超える群より増加した(3 単位対 2 単位)。

以上のエビデンス総体の検討を行っても、「その他」の領域におけるフィブリノゲン製剤の果たす役割については不明確な点が残り、TEG などの検査値に基づく使用が有効である可能性があるが、これらには今後の検討が必要である。

一方、「その他」の領域において、フィブリノゲン投与開始のトリガー値を直接の検討対象としたエビデンスはなく、上記観察研究 61 にのみ見るが、200 mg/dlを至適トリガー値と断定するにはエビデンスが不足している。目下のところ日本で行われている「150 mg/dl」以上であるという有力なエビデンスは存在しないと思われる。

フィブリノゲン製剤の既知の有害事象としては血栓塞栓症が懸念されるが、対象としたエビデンス総体のうち、RCT において、有害事象を検討した症例数はすくなく、評価に十分ではない。一方観察研究のいくつかにおいて、フィブリノゲン製剤は静脈血栓塞栓症(VTE)を増加させなかったと報告されている。

3) Summary of evidence

① RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Najafi,	1-	完全股関節形成術	フィブリノゲン		輸血必要量は 0.8 単位対 1.06 単
2014	が、RCT		製剤	製剤非投与	位で有意差はなかった.
			(予防的に30mg		出血量については976ml対
			/kg 投与)		1,100m <i>l</i> で時間因子を考慮する
					とフィブリノゲン投与群で低
					下していた.
					血栓塞栓症は、対照とフィブリ
					ノゲン投与で差はない.
Fenger-	RCT	根治的膀胱切除術	フィブリノゲン	プラセボ投与	Thromboelastography での
Eriksen,	Ex vivo trial		濃縮製剤		maximum clot firmness (MCF)
2009			(失血量を1:1		が primary endpoint. HES 30%
			で HES で補い,		希釈で MCF は減少した.フィ
			30%希釈となっ		ブリノゲン製剤で低下した
			た時に10例を		MCF は上昇した.
			フィブリノゲン		フィブリノゲン投与10例中2
			濃縮製剤 45mg/		例で輸血が必要だったが、プラ
			kg 投与		セボ投与群では10例中8例で
					輸血を必要とした.
					濃縮製剤は血小板機能とトロ
					ンビン産生には影響はなかっ
Mill	DCT		HECC OCL	D' 1 '	t.
Mitter-		整形外科手術			ROTEM のパラメータとして
mayr, 2007	晶質液, 膠質			13~15m1/ kg/ n	のαアングル,血栓強度,フィ
	液の影響に対		kg/h, HESか Gelatin投与で		ブリノゲン重合は HES と Gela-
	するfibrinogen 投与の影響		ROTEM でフィ		tin で対照に比べ低下した. 血 栓強度低下のため濃縮フィブ
	仅分の影響		ブリノゲン重合		リノゲンを投与した例は膠質
			が非常に減少し		液群で13例, 対照は0. フィブ
			が非常に減少し た症例で30mg/		リノゲン濃縮製剤投与で
			kg 投与		FIBTEM-MCF>7mm, total
			(FIBTEM-		clot strength > 45mm が維持で
			MCF of < 7mm		clot strength/45mm が無持て きた. 凝固因子 VII, VIII, IX
			ならびに臨床的		の活性は膠質液群で低下.
			出血にて、フィ		ROTEMでみた凝固時間、トロ
			ブリノゲン製剤		ンビン産生の分子マーカーに3
			投与)		群で差はなかった.
			汉プ/		町へ左はながりた.

②観察研究

	.,,,,				
Study	Study type	Population	Intervention	Comparator	Outcomes
Weiss,	多施設共同前	疾患に関わらず, 急性	急性出血に対す	N/A	出血量中央値 2.01, フィブリノ
2011	向き観察研究	出血でフィブリノゲ	るフィブリノゲ		ゲン濃度中央値145mg/kgで治
		ン濃縮製剤が投与さ	ン濃縮製剤投		療介入が開始され、フィブリノ
		れた患者.(一般手術,	与. 臨床医の判		ゲン濃縮製剤の使用量は中央
		肝臓移植, 整形外科な	断で FFP も 用		値 4g, FFP によるフィブリノ
		どの手術が69%,外	いられている.		ゲンの投与量は中央値 8g であ
		傷患者が28%, 脳内	(出血量中央值		り, フィブリノゲンレベルは終
		出血などの特発性出	2.01, フィブリノ		了時に 219mg/dl に増加した.
		iii 3%). n = 223	ゲン濃度中央値		多重ロジスティック回帰分析
			145mg/kg で 治		では、治療後のフィブリノゲン
			療介入が開始)		値は生存率に有意なリスク因
					子となった. (投与後, 投与24
					時間後において、それぞれ p=
					0.047, p=0.032 であった). 血
					栓塞栓症は約3%にみられた.

Adelmann, 2014		脳神経外科における 待機的開頭術	術後頭蓋内血腫 のために外科的 治療が必要で あった患者(n= 7)		術後頭蓋内血腫のために外科的治療が必要であった患者はフィブリノゲン濃度 170mg/dl, それ以外の患者は237mg/dlで有為差あり(p=0.03).フィブリノゲンレベルが手術後
					200mg/dl より低い場合の術後 頭蓋内血腫のオッズ比は 10.02 (CI:1.19~84.40, P½0.03) で あった. 凝固第 XIII 因子濃度に差はな
Costa, 2014	研究	大静脈保存法を用いた同所性肝移植患者で、tranexamic acidが投与された症例が対象. 術前ヘモグロビン 9~12g/dlで調整した症例. (n=190)		N/A	かった. 手術前フィブリノゲンが200mg/dl以下の群では手術中のRCC輸血量が200mg/dlを超える群より増加した(3単位対2単位). 手術前フィブリノゲンが200mg/dl以下の群では手術中の輸血を必要としなかった患者が200mg/dl以下を超える群よりすくなかった[8例(13%)対45例(35%)]. 手術前フィブリノゲンが200mg/dl以下の群では移植後フィブリノゲン濃度100mg/dlに低下した例は24例(39%)で、手術前200mg/dlを超える群の7例(5.5%)より多かった.

文 献

- 1) Najafi A, Shariat Moharari R, Orandi AA, et al: Prophylactic administration of fibrinogen concentrate in perioperative period of total hip arthroplasty: a randomized clinical trial study. Acta Med Iran, 52: 804—810, 2014.
- Fenger-Eriksen C, Jensen TM, Kristensen BS, et al: Fibrinogen substitution improves whole blood clot firmness after dilution with hydroxyethyl starch in bleeding patients undergoing radical cystectomy: a randomized, placebo-controlled clinical trial. J Thromb Haemost, 7: 795—802, 2009.
- 3) Mittermayr M, Streif W, Haas T, et al: Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg, 105: 905—917, 2007.
- 4) Weiss G, Lison S, Glaser M, et al: Observational study of fibrinogen concentrate in massive hemorrhage: evaluation of a multicenter register. Blood Coagul Fibrinolysis, 22: 727—734, 2011.
- 5) Adelmann D, Klaus DA, Illievich UM, et al: Fibrinogen but not factor XIII deficiency is associated with bleeding after craniotomy. Br J Anaesth, 113: 628—633, 2014.
- 6) Costa M, Dalmau A, Sabate A, et al: Low plasma fibrinogen levels and blood product transfusion in liver transplantation. Minerva Anestesiol, 80: 568—573, 2014.

CQ2: 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか? また, FFP: PC: RCC の最適投与比はどれくらいか?

【外傷】CQ2 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また, FFP:PC: RCC の最適投与比はどれくらいか?

1) Recommendation

大量輸血を要することが予想される外傷患者に対して,大量輸血プロトコールを用いることを強く推奨する (1C).

大量輸血が予想される患者の初期治療においては、早期に各製剤の投与単位比として新鮮凍結血漿:血小板 濃縮製剤:赤血球が1:1:1となることを目標とし、少なくとも新鮮凍結血漿:血小板濃縮製剤:赤血球投与 比≥1:1:2を維持できるように新鮮凍結血漿、血小板濃縮製剤を投与することを強く推奨する (1C).

2) 推奨文の具体的な解説

旧「血液製剤使用指針」(平成28年6月一部改訂)では、以下のように記述されていた:"術中の出血に対して、循環血液量に対する出血量の割合と臨床所見に応じて、原則として以下のような成分輸血により対処する:循環血液量以上の大量出血(24時間以内に100%以上)時又は100ml/分以上の急速輸血をするような事態には、凝固因子や血小板数の低下による出血傾向(希釈性の凝固障害と血小板減少)が起こる可能性があるので、凝固系や血小板数の検査値及び臨床的な出血傾向を参考にして、新鮮凍結血漿や血小板濃厚液の投与も考慮する"。そのため、相当量の大量出血時においてのみ、新鮮凍結血漿や血小板濃縮製剤が考慮されることとなる。しかし、外傷患者では受傷後早期から消費や希釈のみによらない凝固障害を伴うため、早期からの十分な凝固止血因子の補充の重要性とその転帰改善効果が示唆されている。大量出血による急性消費性、希釈性凝固障害の防止、もしくは早期改善を目的とする大量輸血プロトコール(MTP)による治療、すなわち、早期からの先制的な新鮮凍結血漿、血小板製剤投与が有効である可能性がある。MTPは、事前に規定した比率での成分輸血療法を迅速に行うことを可能とし、大量出血を伴う患者に対して速やかに組織的対応を実践するものであり、死亡率低下、総輸血量減少と輸血関連合併症の発症割合の低下、さらにはコストの低減が期待される。一方、血漿大量投与による急性肺障害や volume overload などの有害事象が惹起される可能性がある。したがって、MTPが推奨できるかどうか、また、推奨される場合には、FFP:PC:RCC の最適投与比はどれくらいかを CQ として選択した.

MTP は事前に規定した比率での輸血療法を迅速に行うことを可能とし、速やかに組織的対応を実践するものである。その実施には、1)血液製剤比、2)血液製剤の迅速な利用可能体制、3)標準的凝固異常評価、4)アシドーシス、低体温、低カルシウム血症の評価と治療などを含む施設としての診療体制を要する¹⁾. 高血漿(:血小板):赤血球比による輸血が推奨されることとなれば、大量出血症例もしくは、出血が進行し高度となる可能性が高い症例が入院した場合、推奨される比率で(例えば thawed FFP(解凍血漿製剤)10単位(事前に溶解しておきすぐに投与できるようにしておく)、赤血球10単位、もしくは血小板濃縮製剤やクリオプレシピテートをセットで準備して迅速に供給するとともに、止血が完了するまで供給を繰り返し継続するなどの輸血部門を中心とする体制整備を要することとなる。

本 CQ においては、成人重症外傷患者を対象 (P) とした. 介入と対象 (I, C) は、高血漿:赤血球比、高血小板:赤血球比、もしくは、高血漿:血小板:赤血球比による輸血を介入とし、介入群より低い血漿:赤血球比、血小板:赤血球比、もしくは、血漿:血小板:赤血球比による輸血治療を対照群とした. 28 日 (または 30 日) 死亡率、院内死亡率、あるいは入院後 24 時間以内の早期死亡率を主要評価項目とし、輸血必要量、ICU 滞在日数、血栓塞栓症および臓器障害発生を副次評価項目とした.

MTP の有効性を評価した RCT $^{2(3)}$ および深刻なバイアスリスクが認められる観察研究に対するメタ解析 $^{4(7)}$ では、modified whole blood と各製剤を1:1で投与する MTP をパイロット的に比較した RCT $^{3(3)}$ と MTP の導入効果を見た before-and-after study に対するメタ解析 $^{5(3)}$ を除いて、高血漿:赤血球比輸血群で死亡率が低い傾向が示された。ただし、観察研究に対するメタ解析では、血小板:赤血球比のみを対象として評価した報告はなく、適切な血小板輸血比については明らかにできない。唯一の質の高い RCT である PROPPR 研究 $^{2(3)}$ では、primary endpoint である 24 時間後 [12.7% vs 17.0%, Adjusted RR 0.75 (0.52 to 1.08), P=.12] 及び 30 日後全死亡 [22.4% vs 26.1%, Adjusted RR 0.86 (0.65 to 1.12), P=.26] は、血漿:血小板:赤血球比1:1:1 群で有意差は認められなかったが、24 時間以内の主要死亡原因である失血死は、血漿:血小板:赤血球比1:1:1 群で有意だは認められなかったが、24 時間以内の主要死亡原因である失血死は、血漿:血小板:赤血球比1:1:1 群で有意に少なく (9.2% vs 14.6%, P=.03),解剖学的止血の達成が有意に高率であった (86% vs 78%, P=.006). また、PROPPR 研究では thawed plasma(解凍血漿)を常置したデザインとなっており、患者到着後、MTP が発動されて 10 分以内に血液製剤が患者のもとに搬送されている。できるだけ早く輸血を開始できる環境にある場合には、血漿:血小板:赤血球比=1:1:1 の投与比で準備された MTP が有用である可能性が高い(解凍血漿を常備することにより 15 分以内に投与可能である).また、

PROPPR のサブ解析において、患者到着から最初に MTP cooler に含まれる血液製剤が患者のもとに到着するまでの時間 (分) が、24 時間以内ならびに 30 日死亡の独立したリスク因子であることが報告されている 7). ただし、thromboelastography(TEG)などの Point-of-care(POC)テストによる検査結果を待つ時間的余裕がある患者に対して、我が国の多くの施設のように解凍血漿を準備できないなどの輸血体制では、TEG による検査値に基づく輸血が有効である可能性を示す RCT の報告がある 8 .

一方、観察研究に関しては、よく調整された前向き観察研究は PROMMTT study を含む 2 編のみであり 9^{910} 、深刻なバイアスリスクが認められる。特に生存バイアスは重大である。FFP 投与には溶解するための時間が必要であり、外傷早期死亡患者(入院後 $1\sim2$ 時間以内)に対しての FFP 投与開始は RCC に比して遅れるため、早期死亡例では低血漿:赤血球比とならざるを得ない。このような生存バイアスが存在する場合には、必ずしも高血漿:赤血球比が有効なために死亡率が低下したとはいえない 1^{10} . 観察研究においては、この深刻なバイアスを完全に排除することができないが、ほとんどすべての研究において高血漿:血小板:赤血球比が死亡率低下につながることが示されており、出血による死亡が多い入院後 24 時間以内(特に $3\sim6$ 時間以内)で顕著である。さらに、早期における十分な血漿投与の重要性が指摘されている $1^{20}\sim14^{10}$. 本邦から発表された多施設共同後向き観察研究においても、6 時間以内に血漿:赤血球比>1:1 を達成することの有効性が報告されている 1^{50} . 観察研究では、高血小板:赤血球は、高血漿:赤血球ほどのインパクトは示されていないが、高血小板:赤血球比による輸血がより死亡率を下げるとの報告もある $1^{50}\sim18^{5}$.

推奨される血漿:血小板:赤血球比については、少なくとも1:1:2以上であることが有効との報告が多数を占めるが、血漿:赤血球比1:1まで増加させても用量反応性は示さないとの観察研究のメタ解析結果⁴もあり、この点においては不精確性が高い。本邦においては、大部分の施設で解凍血漿や血小板製剤の常時在庫を整備できない。そのため、1:1:1を目指した MTP として運用し(できるだけ早期から血漿を投与する体制構築を行うことが重要である)、少なくとも1:1:2以上の血漿・血小板:赤血球比を維持することが有効であると考えられる。輸血必要量、ICU滞在日数、臓器障害などの評価項目に関しては、研究間の非一貫性があり、一定の見解を示すことができなかった。

急性肺障害については、RCTではその合併を評価するための十分な症例数はない、バイアスリスクの高い観察研究を対象としたメタ解析では、高血漿:赤血球比により増加すると報告されている⁶.しかし、その後に報告された観察研究である PROMMTT study のサブ解析は、晶質液の投与は呼吸障害を増加させるが血漿投与そのものは肺障害を増加させず、早期の血小板投与は減少させたと報告している¹⁹.また、高血漿:血小板:赤血球比自体は ARDS を増加させないとの報告²⁰もあり、高血漿:血小板:赤血球比による輸血療法が急性肺障害を増加させるという明確な結果は得られなかった。

血栓塞栓症については TEG を用いた MTP の有効性を検討した RCT において評価されているが、サンプルサイズが小さく十分な検出力はない 8 . 2つの観察研究でも評価されており、大量出血患者に対する MTP による輸血は VTE を増加させないことが示されている一方、大量出血を伴わない患者に対する FFP 投与は VTE につながる可能性が示唆されている 20 . また、高血小板:赤血球比輸血は、VTE を増加させないとも報告されている 20 . これらのデータは、高血漿:血小板:赤血球比輸血が血栓塞栓症を増加させるという明確なエビデンスを呈示するものではない.

他のガイドラインにおける推奨:

大量出血を伴う外傷患者に対するヨーロッパガイドラインでは、大量輸血が予想される患者の初期治療においては血漿:赤血球 $\geq 1:2$ となるように FFP を投与することが推奨されている(Grade 1B)²³. また、A practice management guideline from the Eastern Association for the Surgery of Traumaでは、"大量輸血プロトコールは死亡率低下と輸血量減少に有効か?"、および "高血漿・血小板/赤血球比輸血は死亡率低下と輸血量減少に有効か?"を異なる CQ として採用し、大量輸血プロトコールを用いることとともに、高血漿・血小板/赤血球比による輸血(1:1:1)を推奨している²⁴.

3) Practice points

早期に血漿や血小板が投与できない体制では、TEGなどのPOCテストやフィブリノゲン濃度測定によるモニタリングにもとづく投与が有効である可能性があることから、各施設において、早期のMTP発動、各製剤投与の実行の可能性の検討が重要であり、特に、血漿の早期投与が可能な施設体制の整備が必要となる。血小板製剤の早期入手に関しては、日本赤十字血液センターとの連携体制の構築が重要である。また、MTP発動の対象となる患者群の選択方法としてのスコアリングシステムの構築や、MTPへのフィブリノゲン濃縮製剤

やクリオプレシピテートの導入に関しても検討を考慮する. 今後, 有効な MTP の構築には, 解凍血漿を準備できる体制の早期構築が望まれる. また, 全血輸血や冷蔵血小板の有効性が確認されれば本邦にとって有用な手段となり得る.

4) Summary of evidence

① meta-analysis

1) lile	ta-analysis				
Study	Study type	Population	Intervention	Comparator	Outcomes
Bhangu,	meta-analysis	血漿:赤血球輸血比	高い血漿:赤血	低い血漿:赤血	24 時間死亡率は, 2 つの研究で
2013		の高低を比較した試	球輸血比率		検討され,血漿高比率1:1.5で
		験に対する meta-			死亡率の減少を示した(OR
		analysis : Survivor			0.34, 95 % CI 0.23~0.50, p<
		bias を除くため、血			0.001). Maegele らは, 比率 1:
		漿:赤血球輸血比が			1.1 (高比率: 15/229 (7%) 対
		低い群,高い群で,重			低比率:119/484 (25%), p<
		症度(Injury Severity			0.001) で 6 時間後の死亡率の減
		Score: ISS) に両群間			少を示した. 30 日間または入院
		で差がない試験が選			死亡率に関するデータは, 異な
		択された. (before-			る比率のカットオフ値が用い
		and-after study は除			られた. 最も一般的に報告され
		<)			たのは1:2であり、4つの研究
		最終的に、6つの後ろ			では1:2をカットオフとした
		向き観察研究(1,885			検討があり, 高い群で死亡率が
		症例を含む:civilian			低かった (OR 0.49, 95% CI 0.31
		trauma 5編, military			~0.80, p=0.004). 6つの研究
		injury 1編) が, meta-			で1:2より高い比がカットオ
		analysis の 対 象 と			フとして検討され, より高い比
		なった.			で死亡率が有意に低下した
					(OR 0.56, 95% CI 0.40∼0.78 p
					<0.001). カットオフ値が低い
					検討においてもその結果は同
					様であった(1:2.5と1:4の
					間の比, OR 0.41, しかしこの
					検討では、heterogeneity (I2=
					78%), 広い95%CI:0.16~
					1.00, p=0.05) を認めた.
					カットオフ値を1:1に設定し
					ても, 1:2の比を超えるさらな
					る30日死亡率の改善は、認め
					られなかった (OR 0.5, 95% CI
					$0.37 \sim 0.68$, p<0.001).
Mitra,	meta-analysis	同一施設でMTPの	外傷患者の初期		MTP導入前の平均死亡率は
2013					41.3% (標準偏差 (SD) 13.1)
		before-and-after			であった。30日間の死亡率に対
		study を集めたメタ		= - 6 2212	する MTP の効果は有意ではな
		解析. 8件の研究には			かった(プールされたOR
		合計 1.586 件の患者が			0.73;95%信頼区間:0.48~
		含まれ、各研究では中			1.11; P=0.14).
		央値として201(77~			
		264) 症例が検討され			
		た.			
	1	1	I.		

Murad,	meta-analysis	大量輸血を受けた外	高い血漿:赤	 上 上 上 上	低い血漿:	赤血	プール分析では, 1:3より大き
2010		傷患者での血漿輸血	球輸血比率	3	球輸血比率		い血漿:赤血球輸血比(1:2.5
		の効果を見た10の観					~1:1の範囲) での血漿輸血
		察研究の解析					は、死亡率の有意な低下と関連
							していた (OR 0.38, 95% CI:
							0.24~0.60;I2=85%;Q 検定の
							p 値 = 0.01). 対照群で使用され
							た血漿:RCC 比はそれぞれの
							研究間で異なったが、いずれの
							場合もそれぞれの介入群の比
							率より低かった.
							コントロール群でのイベント
							発症率が高いため、絶対的な治
							療効果が大きかった(1 人の死
							亡を防ぐために4症例において
							血漿:赤血球輸血比が高い治療
							を行う必要がある).

② RCT

2 KC.	_				
Study	Study type	Population	Intervention	Comparator	Outcomes
Holcomb,	重症外傷患者	外傷現場から直接搬	超早期からの血	超早期からの血	primary endpoint である 24 時
2015	680 症 例 に 対	送され, 病院搬送まで	漿:血小板:赤	漿:血小板:赤	間後[12.7% vs 17.0%, Adjusted
	する pragmatic,	もしくは搬送後1時	血球=1:1:1	血球=1:1:2	RR $0.75 (0.52 \text{ to } 1.08), P = .12]$
	phase 3, mul-	間以内に少なくとも	輸血. 輸血部は,	輸血. 輸血部は,	及び30日後全死亡 [22.4% vs
	tisite, random-	1単位以上の輸血を	連絡があってか	thawed FFP3	26.1%, Adjusted RR 0.86 (0.65)
	ized clinical	受け、24時間以内に	ら, 10分以内	単位, 血小板な	to 1.12), P=.26] は,血漿:血
	trial	20 単位以上の赤血球	(中央値8分)	し,赤血球6単	小板:赤血球比1:1:2群と比
		輸血を受けるリスク	に, 血小板6単	位が入った1番	較して1:1:1群で有意差は認
		のある成人患者	位(プール血小	目の容器を用意	められなかったが、失血死(24
			板), 赤血球6単	しておき, FFP3	時間以内の死亡の主な原因)
			位, thawed	単位,6単位	は, 血漿: 血小板: 赤血球比1:
			FFP6単位が	(プール血小	1:1群で有意に少なく(9.2%
			入った容器を用	板), 赤血球6単	vs 14.6%, P=.03), 解剖学的止
			意しておき、輸	位が入った2番	血の達成が有意に高率であっ
			血が必要なくな	目の容器を用意	た (86% vs 78%, P=.006).
			るまで、この供	し、これを順番	
			給を繰り返し継	に繰り返し投与	
			続する.	する.	

③観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Holcomb,	多施設共同前	12,560 成人外傷患者	高血漿:赤血球		生存バイアスを排除するため,
2013	向き観察研究	の中で, 入院 31 分後	輸血比	輸血比	3単位の輸血もしくは入院後31
		以降6時間以内に少	高血小板:赤血	低血小板:赤血	分以上生存のいずれかの遅い
		なくとも1単位の赤	球輸血比	球輸血比	方で、患者がエントリーされて
		血球輸血を受け (n=			おり、患者エントリーまでの時
		1,245), 24 時間以内に			間のばらつき,血漿:赤血球,
		3単位以上の血液製			血小板:赤血球輸血比の時系列
		剤の投与を受けた患			での変化を考慮した multilevel
		者 905 名について解			time-dependent Cox propor-
		析			tional hazards regression 解析
		(院内死亡率は25%)			が実施された. 血漿: 赤血球輸
					血比が高い (adjusted hazard
					ratio = 0.31; 95% CI, 0.16~0.58,
					p<0.001), 血小板:赤血球輸血
					比が高い (adjusted hazard
					ratio = 0.55; 95% CI, 0.31~0.98,
					p<0.001) ことが, 入院後6時
					間以内の死亡率を独立して減
					少させていた. (この時期は,
					出血による死亡が多数を占め
					る時期).
					入院後6時間以内に,これらの
					比が1:2より低い場合には1:
					1以上の群と比べて,死亡率は
					3~4 倍増加していた.
					一方, 入院後6時間以降, 24時
					間までは、FFP:RCCのみが死
					亡率に関係し(adjusted hazard
					ratio = 0.34; 95% CI, 0.14~0.81,
					p=0.2), 入院後24時間以降(こ
					の時期は、出血以外の原因の死
					亡が多数を占める),血漿:赤
					血球, 血小板:赤血球輸血比は
					死亡率に影響していなかった.
Kutcher,	単施設前向き	重症外傷患者(high-	入院6時間後	入院6時間後	凝固因子, 凝固阻止因子など凝
2014	観察研究	est-level trauma acti-	RCC: FFP<=	RCC: FFP>	固マーカーが経時的に測定さ
		vation)336 症例	1.5 : 1	1.5:1	れ,より FFP を投与した群で,
					PTT, 凝固 V, VIII, IX 因子
					の有意な改善が認められた.
					FFP を少ない比率で投与した
					群は、FFPをより多い比率で投
					与した群と比較して, 年齢, 重
					症度, 外傷の種類等を調整した
					後も, 院内死亡率は 2.048 倍高
					かった (p=0.027, 95 % CI:
					1.087~3.858).

文 献

- 1) American College of Surgeons. ACS TQIP Best Practice Guidelines: Massive Transfusion in Trauma. https://www.facs.org/~/media/files/quality% 20programs/trauma/tqip/massive% 20transfusion% 20in% 20trauma% 20guildelines.ashx(2018年12月現在)
- 2) Holcomb JB, Tilley BC, Baraniuk S, et al: Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA, 313: 471—482, 2015.

- 3) Cotton BA, Podbielski J, Camp E, et al: A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg, 258: 527—532, discussion 32—33, 2013.
- 4) Bhangu A, Nepogodiev D, Doughty H, et al: Meta-analysis of plasma to red blood cell ratios and mortality in massive blood transfusions for trauma. Injury, 44: 1693—1699, 2013.
- 5) Mitra B, O'Reilly G, Cameron PA, et al: Effectiveness of massive transfusion protocols on mortality in trauma: a systematic review and meta-analysis. ANZ J Surg, 83: 918—923, 2013.
- 6) Murad MH, Stubbs JR, Gandhi MJ, et al: The effect of plasma transfusion on morbidity and mortality: a systematic review and meta-analysis. Transfusion, 50: 1370—1383, 2010.
- 7) Meyer DE, Vincent LE, Fox EE, et al: Every minute counts: Time to delivery of initial massive transfusion cooler and its impact on mortality. J Trauma Acute Care Surg, 83: 19—24, 2017.
- 8) Gonzalez E, Moore EE, Moore HB, et al: Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann Surg, 263: 1051—1059, 2016.
- 9) Holcomb JB, del Junco DJ, Fox EE, et al: The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg, 148: 127—136, 2013.
- 10) Kutcher ME, Kornblith LZ, Vilardi RF, et al: The natural history and effect of resuscitation ratio on coagulation after trauma: a prospective cohort study. Ann Surg, 260: 1103—1111, 2014.
- 11) Snyder CW, Weinberg JA, McGwin G, Jr., et al: The relationship of blood product ratio to mortality: survival benefit or survival bias? J Trauma, 66: 358—362, discussion 62—64, 2009.
- 12) del Junco DJ, Holcomb JB, Fox EE, et al: Resuscitate early with plasma and platelets or balance blood products gradually: findings from the PROMMTT study. J Trauma Acute Care Surg, 75: S24—S30, 2013.
- 13) de Biasi AR, Stansbury LG, Dutton RP, et al: Blood product use in trauma resuscitation: plasma deficit versus plasma ratio as predictors of mortality in trauma (CME). Transfusion, 51: 1925—1932, 2011.
- 14) Spinella PC, Perkins JG, Grathwohl KW, et al: Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma, 66: S69—S76, 2009.
- 15) Hagiwara A, Kushimoto S, Kato H, et al: Can Early Aggressive Administration of Fresh Frozen Plasma Improve Outcomes in Patients with Severe Blunt Trauma?--A Report by the Japanese Association for the Surgery of Trauma. Shock, 45: 495—501, 2016.
- 16) Holcomb JB, Zarzabal LA, Michalek JE, et al: Increased platelet: RBC ratios are associated with improved survival after massive transfusion. J Trauma, 71: S318—S328, 2011.
- 17) Inaba K, Lustenberger T, Rhee P, et al: The impact of platelet transfusion in massively transfused trauma patients. J Am Coll Surg, 211: 573—579, 2010.
- 18) Pidcoke HF, Aden JK, Mora AG, et al: Ten-year analysis of transfusion in Operation Iraqi Freedom and Operation Enduring Freedom: increased plasma and platelet use correlates with improved survival. J Trauma Acute Care Surg, 73: S445—S452, 2012.
- 19) Robinson BR, Cotton BA, Pritts TA, et al: Application of the Berlin definition in PROMMTT patients: the impact of resuscitation on the incidence of hypoxemia. J Trauma Acute Care Surg, 75: S61—S67, 2013.
- 20) Park PK, Cannon JW, Ye W, et al: Transfusion strategies and development of acute respiratory distress syndrome in combat casualty care. J Trauma Acute Care Surg, 75: S238—S246, 2013.
- 21) Zander AL, Olson EJ, Van Gent JM, et al: Does resuscitation with plasma increase the risk of venous thromboembolism? J Trauma Acute Care Surg, 78: 39—43, discussion 43—44, 2015.
- 22) Cap AP, Spinella PC, Borgman MA, et al: Timing and location of blood product transfusion and outcomes in massively transfused combat casualties. J Trauma Acute Care Surg, 73: S89—S94, 2012.
- 23) Rossaint R, Bouillon B, Cerny V, et al: The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care, 20: 100, 2016.
- 24) Cannon JW, Khan MA, Raja AS, et al: Damage control resuscitation in patients with severe traumatic hemorrhage: A practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg, 82: 605—617, 2017.

【心臓血管外科】CQ2 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また, FFP: PC: RCC の最適投与比はどれくらいか?

1) Recommendation

大量出血をきたした心臓血管外科手術に対して大量輸血プロトコール massive transfusion protocol (MTP) を用いることを弱く推奨する (2C).

心臓血管外科手術に対して大量輸血プロトコール massive transfusion protocol (MTP) を行う場合, 各製剤の投与単位比として新鮮凍結血漿:血小板濃縮製剤:赤血球を1:1:1とすることを目標とし,少なくとも新鮮凍結血漿:赤血球投与比は1:1よりも高い比率を強く推奨する (1C).

2) 推奨文の具体的な解説

大量輸血プロトコール(MTP は、大量出血による急性消費性、希釈性凝固障害の防止、もしくは早期改善を目的とし、早期から赤血球投与に加え、先制的に新鮮凍結血漿(FFP)、血小板製剤(PC)の投与を行う輸血療法である.

急速失血により24時間以内に循環血液量以上の大量出血,又は循環血液量以上の大量の輸血が行われると,血液の希釈により出血傾向を来すことがあり,凝固系や血小板数の検査値及び臨床的な出血傾向を参考にして,新鮮凍結血漿や血小板濃厚液の投与が考慮されている。しかし,これに対して,大量輸血プロトコールでは,事前に規定した比率での成分輸血療法を迅速に行うことを可能とし,大量出血を伴う患者に対して速やかに組織的対応を実践するものであり,死亡率低下と総輸血量減少と輸血関連合併症,さらにはコストの低減が期待される。一方,血漿の大量投与に繋がる可能性があり,急性肺障害や血栓塞栓症などの有害事象が懸念される。したがって,MTPが推奨できるかどうか,また,推奨できる場合には,FFP:PC:RCC比の最適投与比はどれくらいかをCQとして選択した。

本CQにおいては、成人心臓血管外科患者を対象患者とした。介入と対象は、高いFFP:RCC比、高いPC:RCC比、もしくは、高いFFP:PC:RCC比による輸血を介入とし、介入群より低いFFP:RCC比、PC:RCC比、もしくは、FFP:PC:RCC比による輸血治療を対照群とした。28日(または30日)死亡率、院内死亡率、あるいは入院後24時間以内の早期死亡率を主要評価項目とし、出血量、輸血必要量、出血が持続するための再手術率、止血成功率、急性肺障害、および血栓塞栓症を副次評価項目とした。

心臓血管外科領域で MTP の死亡率を評価できる RCT はなく、メタ解析のデータでは、FFP: RCC が 1: 1よりも高い比率の投与で死亡率が低下する事が示されている1,本研究の40%が外傷患者群,14%が心臓外 科の患者群であり、多領域に渡る患者群すべてが合計された評価であるが、MTP実施例では、OR=0.38(0.24 \sim 0.60),MTP 非実施例では OR = 1.22 (0.73 \sim 2.03) であり,MTP 実施の有効性が報告されている. 心臓外 科症例のみで,MTP の死亡率を評価できるメタ解析,RCT は無い.心臓外科手術を対象とした研究におい て、赤血球製剤の保存期間の影響を検討する RCT の post-hoc 解析にて、手術開始後 24 時間以内に赤血球が 6単位(本邦での12単位)以上輸血された、もしくは、総輸血量が8単位以上であった患者において、FFP: RCC が1以上の場合、術後28日以内の全死亡、多臓器不全が減少したと報告されている². さらに、FFP: RCC が 1 以上の場合,術後 28 日以内の全死亡,多臓器不全が減少したとの報告³, RCC に対する FFP の投 与比が1を超える投与が、30日死亡の低下につながるとの後ろ向き観察研究も報告されている². 加えて、大 動脈瘤破裂の患者で,FFP:RCC を 1:1 で投与する MTP の導入が,30 日死亡を有意に減少したとの beforeand-after 研究が報告されている⁴. ただし、PC:RCC 比のみを対象として評価した報告はなく、適切な血小 板輪血比については明らかにできない. 観察研究(200症例を超える比較的規模の大きい研究)では, RCC 5 単位、FFP5 単位と PC2 単位(本邦における RCC 10 単位、FFP 10 単位、PC 16 単位)を先制投与した MTP により、死亡率は有意に低下したとの結果が得られている⁵. また、PC:RCCが1よりも高い比率の場合は 死亡率に有意差はないものの、多臓器不全は有意に減少したとの報告がある3.

出血量評価にはメタ解析、RCT 各1つが該当し、MTP 実施および非実施の両者とも出血量に差は無いとの結果であった¹⁾⁶.また、観察研究を含むメタ解析では、血漿輸血は出血量を減少させないとの結果であった¹⁾.ただし、このメタ解析は37の研究報告が最終的に解析され、うち13がRCT、24が観察研究で、心臓外科手術に関する報告は5含まれている。さらに、凝固障害、肝硬変、外傷、重症急性膵炎や外科・整形手術など多分野に渡る研究が含まれており、心臓外血管外科領域に対する、MTPの出血量評価としてエビデンスレベルは低い。

輸血必要量に関する質の高い報告は少なく、観察研究でICUでの輸血必要量が減少したとの報告があるが、

エビデンスレベルは低い⁴. さらに、出血が持続するための再手術、止血成功率に関する質の高い報告はない. 心臓血管外科手術の MTP の合併症として急性呼吸障害が予想されるが、このアウトカムに対して質の高い報告はない. RCT と観察研究を含むメタ解析では血漿輸血と呼吸器合併症との関連が示されていた¹⁾.

心臓外科手術領域で、血栓塞栓症を報告した質の高い報告はないが、観察研究において、大量輸血へのMTPは血栓塞栓症を増加させないが、大量出血でない症例では血漿輸血は静脈血栓症につながる可能性が示されている⁷. 研究間のバイアスリスクが深刻であり、一定の見解を示すことができなかった.

また、最近のシステマティクレビューでは、TEG や ROTEM を指標とした輸血療法が総輸血量を軽減することが示されている 899 . MTP のガイドにも術中の凝固因子の検査値を参考にする事が重要であり、臨床的有効性を示すエビデンスが一部で確認されている 100 .

他のガイドラインにおける推奨:

The Society of Thoracic Surgeons (STS) のガイドラインでは、massive transfusion algorithm としての記載があり、大量の RCC 輸血を必要とする大量出血を伴う心臓手術では、RCC に加え FFP 輸血を行う事を Class IIb 推奨している(Level of evidence B) 11 . 血小板輸血に関しては、人工心肺による血小板機能低下が疑われる場合に血小板輸血を行うことを考慮すべきとアメリカ輸血学会ガイドラインに記述されている 12 . また、欧州のガイドラインでは、システマティックレビューにより TEG や ROTEM をガイドとした輸血治療により、RCC、FFP、血小板の全ての輸血量が減少した事を報告し、TEG や ROTEM をガイドとした輸血治療を推奨している。(1B) 13

3) Practice points

本邦における心臓血管外科領域の MTP には幾つかの注意点がある。大量の FFP を溶解するには時間がかかる上、溶解後 3 時間以内に使用しなければならない制限がある。血小板輸血に対しては「改訂血液製剤の使用指針」に使用基準が示されている。すなわち、複雑な心臓大血管外科手術で、止血困難な出血(oozing など)をみる場合には、血小板数が 5 万/山~10 万/山 になるように血小板輸血を行う。また、臨床的に血小板機能異常が強く疑われ、出血が持続する場合には、血小板数を 10 万/山 以上にすることも考慮し、血小板輸血を行う。しかし、血小板数をトリガーとした輸血療法では、血小板数の測定に時間を要する上、血小板数を確認した後に血小板製剤を発注すると、入手するまでに長時間を要し、必要に応じたタイムリーな輸血療法が困難となる問題点がある。また、血小板機能異常を評価できないことも現実である。早期に血漿や血小板が投与できない体制では、TEG などの Point-of-care (POC) テストやフィブリノゲン測定によるモニタリングにもとづく輸血療法が有効である可能性がある。各施設において、いかに早期に血液製剤の投与を実行することができるかについては、血漿の早期投与を可能とする施設体制の整備とともに、血小板製剤の早期入手に関して、日本赤十字血液センターとの連携強化が必要となる。

心臓血管外科領域の大量輸血プロトコール(Massive transfusion protocol:MTP)は、大量出血が予想される症例への大量輸血アルゴリズム(Massive Transfusion Algorithm)と捉え、FFP、PC、RCC を 1:1:1 で予め準備する事が重要であり、大量出血症例に対しては、FFP:PC:RCC の投与比が 1:1:1となることを目標として輸血療法を行うことが現実的である.

今後の有効な MTP の構築には、thawed plasma、whole blood¹⁴⁾、さらに refrigerated platelet などが常備できる体制の早期構築が望まれる.

4) Summary of evidence

① meta-analysis

Study type	Population	Intervention	Comparator	Outcomes
meta-analysis	大量輸血を受けた心	高FFP: RCC比	低 FF: RCC 比	1:3より大きい FFP: RCC 比
	臓外科手術患者にお	率群	率群	(1:2.5~1:1の範囲) での FFP
	いて、FFP 輸血の効			輸血は, 死亡率の有意な低下と
	果を検討した5つの			関連していた (OR 0.38, 95%)
	RCT 解析である.			CI: 0.24~0.60; I2=85%; Q検
				定のp値=0.01). 対照群で使用
				された FFP:RCC 比はそれぞ
				れの研究間で異なったが、いず
				れの場合もそれぞれの介入群
				の比率より低かった.
		meta-analysis 大量輸血を受けた心 臓外科手術患者にお いて, FFP 輸血の効 果を検討した5つの	meta-analysis 大量輸血を受けた心 高FFP: RCC比 臓外科手術患者にお 率群 いて、FFP 輸血の効果を検討した5つの	meta-analysis 大量輸血を受けた心 臓外科手術患者にお いて、FFP 輸血の効 果を検討した5つの

②観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Delaney,	単施設	Massive transfusion	高FFP:RCC比	低FFP:RCC比	高 FFP: RCC 比 お よ び, 高
2017	後向き観察研	は、6単位以上のRCC	率群	率群	PC: RCC 比において, 死亡率
	究	輸血もしくは8単位			は低く、多臓器不全発生も低
		以上のtotal blood			かった.
		components 輸血と定			
		義された. FFP に関			
		して, 高比率とは,			
		1:1以上の比率を,			
		PC に関して、高比率			
		とはPLT:RCC=0.2:			
		1単位以上と定義さ			
		れた.			
Johansson,	単施設	24時間以内に10単位	2005~2006 年	2002~2003 年	30 日死亡は、MTP 群で 20.4%
2009	後向き観察研	以上の投与を受けた	の MTP 群 442	の従来治療群	(n=90), 従来群で31.5% (n=
	究	成人患者を対象とし	人	390 人	123) (P=0.0002), 90 日 死 亡
		た. うち, 心臓外科手			は、22.4 % (n=99) と34.6 %
		術症例は,MTP 介入			(n=135) (P<0.0001) であり,
		群 83 症例(18.8%),			MTP 群の方が死亡率は低かっ
		従来群87症例(22.3			た.
		%) であった.			
Mazzeffi,				低FFP:RCC比	赤血球製剤の保存期間の影響
2017	後向き観察研	術を受けた患者を対	率群	率群	を検討する RCT の post-hoc 解
	究	象とし, 手術中に8単			析にて、手術開始後24時間以
		位以上の赤血球輸血			内に赤血球が6単位(本邦での
		を受けた場合に Mas-			12単位) 以上輸血された, もし
		sive transfusion と定			くは、総輸血量が8単位以上で
		義された.			あった患者において,FFP:
					RCC が 1 以上の場合, 術後 28
					日以内の全死亡,多臓器不全が
					減少したと報告されている.

文 献

- 1) Murad MH, Stubbs JR, Gandhi MJ, et al: The effect of plasma transfusion on morbidity and mortality: a systematic review and meta-analysis. Transfusion, 50: 1370—1383, 2010.
- 2) Mazzeffi MA, Chriss E, Davis K, et al: Optimal plasma transfusion in patients undergoing cardiac operations with massive transfusion. Ann Thorac Surg, 104: 153—160, 2017.
- 3) Delaney M, Stark PC, Suh M, et al: Massive Transfusion in Cardiac Surgery: The Impact of Blood Component Ratios on Clinical Outcomes and Survival. Anesth Analg, 124: 1777—1782, 2017.
- 4) Johansson PI, Stensballe J, Rosenberg I, et al: Proactive administration of platelets and plasma for patients with a ruptured abdominal aortic aneurysm: evaluating a change in transfusion practice. Transfusion, 47: 593—598, 2007.
- 5) Johansson PI, Stensballe J: Effect of Haemostatic Control Resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang, 96: 111—118, 2009.
- 6) Tanaka KA, Egan K, Szlam F, et al: Transfusion and hematologic variables after fibrinogen or platelet transfusion in valve replacement surgery: preliminary data of purified lyophilized human fibrinogen concentrate versus conventional transfusion. Transfusion, 54: 109—118, 2014.
- 7) Zander AL, Olson EJ, Van Gent JM, et al: Does resuscitation with plasma increase the risk of venous thromboembolism? J Trauma Acute Care Surg, 78: 39—43, discussion 43—44, 2015.
- 8) Wikkelsoe AJ, Afshari A, Wetterslev J, et al: Monitoring patients at risk of massive transfusion with thrombelastography or thromboelastometry: a systematic review. Acta Anaesthesiol Scand, 55: 1174—1189, 2011.

- 9) Afshari A, Wikkelso A, Brok J, et al: Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev 2011; CD007871
- 10) Girdauskas E, Kempfert J, Kuntze T, et al: Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: a prospective, randomized trial. J Thorac Cardiovasc Surg, 140: 1117—1124, e2, 2010.
- 11) Ferraris VA, Ferraris SP, Saha SP, et al: Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg, 83: S27—S86, 2007.
- 12) Kaufman RM, Djulbegovic B, Gernsheimer T, et al: Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med, 162: 205—213, 2015.
- 13) Kozek-Langenecker SA, Ahmed AB, Afshari A, et al: Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol, 34: 332—395, 2017.
- 14) Nessen SC, Eastridge BJ, Cronk D, et al: Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion, 53: 107s—113s, 2013.

【産科】CQ2 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また, FFP:PC: RCC の最適投与比はどれくらいか?

1) Recommendation

妊産褥婦の産科大量出血症例に対して MTP は有効であり、各製剤の投与単位比として FFP/RCC 1以上の投与を提案する (2C).

2) 推奨文の具体的な解説

産科大量出血患者に対する MTP の有効性に関する対照との比較検討した RCT は存在しない、外傷を含めた緊急大量輸血全般に関する検討であるものの、対照と比較した観察研究は 3 報認める。Shinha R らは 0 、単一施設の before and after study で、MTP 導入前後の輸血量及び 90 日死亡率を比較した。83 例の MTP 群と 69 例の対照群とを比較した結果、FFP/RCC は上昇したが、死亡率には有意差はみられなかった。Johansson PI らも 2 、単一施設の before and after study (MTP 442 例、control 390 例)で、thrombelastography の結果を参照して MTP を発動後、RCC:FFP:PC=5:5:2(本邦の単位数に直すと 10:10:16 単位)に固定した輸血の効果を検討した。結果は 30 日死亡率(20.4% vs. 31.5%;P=0.0002)も 90 日死亡率(22.4% vs. 34.6%;P<0.0001)も導入後に低下していた。また Baumann Kreuziger らは 3 、単一施設での外傷患者(62 例)と非外傷患者(63 例)で RCC:FFP=1:1 としてその効果を比較した。非外傷患者で APACHE score は有意に高値を示し、24 時間死亡率は有意に低率(27.4% vs. 11.1%、p=0.02)であり、MTP は非外傷患者でも有用である可能性を示した。以上の観察研究の結果から、産科大量出血に対しても MTP は有効と考える

次に産科領域での至適輸血比が検討可能な研究を検索したところ、その有用性を解析した研究を 3 報認めた、いずれの検討でも、母体死亡率および周産期予後を主要評価項目としている。Matsunaga et al. は $^{\circ}$ 、243 例の産科大量出血例に対して、クリオプレシピテートやフィブリノゲン濃縮製剤などを使用せずに、RCC:FFP=1:1.3~1.4 で輸血を行った、単一施設の後方視的検討を報告した。結果は母体死亡が 1 例のみであったとしており、この比が適切であると提案している。しかし、この比率での輸血による有害事象についての記載はない。Gutierrez らは $^{\circ}$ 、RCC(O型Rh($^{-}$)):液状あるいは凍結血漿(AB型):血小板=6:4:1(本邦の単位数に直すと 12:8:15 単位)で行った 31 例で、ICU 入室が 61%、子宮摘出が 32%であったと報告している。Tanaka らは $^{\circ}$ 、羊水塞栓症と診断された 54 例(死亡 22 例、生存 32 例)の対応を解析したところ、生存例に FFP/RCC ≥ 1 の投与が有意に多く見られ、その予後との関連性を指摘した。これらの観察研究の結果、MTP 時の至適な FFP/RCC は 1 以上が提案される。

他のガイドラインにおける推奨:

産科大量出血に対する MTP の記載があるガイドラインは、網羅的検索では認めなかった。さらに産婦人科領域の The Society of Obstetricians and Gynaecologists of Canada⁷, The Royal College of Obstetricians and Gynaecologists⁸のガイドラインを確認したが、MTP あるいは FFP/RCC に関する記載は認めなかった。Royal Australian and New Zealand College of Obstetricians and Gynaecologists⁹のガイドラインでは、産科大量出血の妊産褥婦に対しては、あらかじめ定めた手順により、輸血の手配、輸血の投与量、製剤投与の比率 (MTPs)

を行うことで、死亡および罹患率を低下させる可能性があるとしている。American College of Obstetrician and Gynecologists,のガイドライン Practice Bulletin¹⁰には、MTP の有効性に関するエビデンスは限られているとしながら、MTP が必要な事態では一定の比率で RCC、FFP、血小板製剤を使用することをコンセンサスあるいはエキスパートオピニオンに基づく推奨としている。

3) Practice points

利用可能な輸血製剤、血液分画製剤は国による違いが大きく、システマティックレビューの結果をそのまま利用することは困難である。外傷に対する MTP には、血小板製剤も加えられていることが多い。わが国では血小板製剤の入手が難しいことが多く、これまでの報告では MTP に加えられていない。一方海外の MTP の検討は、外傷に対する MTP をそのまま流用していることもあり、産科大量出血に対する MTP にも、血小板製剤が含まれる。産科大量出血の主たる出血源が子宮であり、その止血における血小板の必要性は凝固因子ほど高くないため、産科大量出血に対する MTP に血小板製剤を加えるのかは、今後の課題であろう。

4) Summary of evidence

①観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Tanaka,	後方視的観察	妊産婦死亡症例検討	FFP/RCC 比		生存群ではFFP/RCC比≥1.0の
2016	研究	評価委員会と羊水塞	≥1.0の輸血,子		輸血が90.6%で実施されていた
	羊水塞栓症の	栓症登録事業へ登録	宮摘出, 子宮動		のに対し、死亡群では40.9%で
	死亡例・生存	された, 羊水塞栓症	脈塞栓術		あった. 子宮摘出, 子宮動脈塞
	例でのFFP/	44 例:死亡群 22 生			栓術に差は認めなかった.
	RCC 比を比較	存群 32 例			生存群ではFFP/RCC比≥1.0の
					輸血を行った例が多かった.
Matsun-	後方視的観察	3次医療機関で産科			全体のFFP/RCC比の中央値は
aga, 2012	研究(単施設)	出血に対して輸血管			2.0 だった. 400ml の全血から
	産科大量出血	理が行われた 243 例			RCC2 単位と FFP3 単位が作成
	の治療に必要				されている背景を鑑みると、全
	な輸血の				血換算すると1:1.3が妥当な輸
	FFP/RCC の				血用と考えられた.
	検討				クリオプレシピテートやフィ
					ブリノゲン濃縮製剤などを使
					用せずに、RCC:FFP=1:1.3
					~1.4 で輸血を行い,母体死亡
					が1例のみであったとしてお
					り、この比が適切であると提案
					している.しかし,この比率で
					の輸血による有害事象につい
					ての記載はない.

文 献

- 1) Sinha R, Roxby D: Change in transfusion practice in massively bleeding patients. Transfus Apher Sci, 45: 171—174, 2011.
- 2) Johansson PI, Stensballe J: Effect of haemostatic control resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang, 96: 111—118, 2009.
- 3) Baumann Kreuziger LM, Morton CT, Subramanian AT, et al: Not only in trauma patients: hospital-wide implementation of a massive transfusion protocol. Transfus Med, 24: 162—168, 2014.
- 4) Matsunaga S, Seki H, Ono Y, et al: A retrospective analysis of transfusion management for obstetric hemorrhage in a Japanese obstetric center. ISRN Obstet Gynecol, 2012: 854064, 2012.
- 5) Gutierrez MC, Goodnough LT, Druzin M, et al: Postpartum hemorrhage treated with a massive transfusion protocol at a tertiary obstetric center: a retrospective study. Int J Obstet Anesth, 21: 230—235, 2012.
- 6) Tanaka H, Katsuragi S, Ikeda T, et al: Efficacy of transfusion with fresh-frozen plasma: red blood cell concentrate ratio of 1 or more for amniotic fluid embolism with coagulopathy: a case-control study. Transfusion, 56: 3042—3046, 2016.
- 7) The Society of Obstetricians and Gynaecologists of Canada (SOGC). No.88 Prevention and management of postpartum haemorrhage. https://sogc.org/wp-content/uploads/2013/01/88E-CPG-April2000.pdf(2018 年 12 月現在)

- 8) Royal College of Obstetricians and Gynaecologists. (2016) Postpartum Haemorrhage, Prevention and Management (Green-top 52). RCOG, London. https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg52/(2018 年 12 月現在)
- 9) Royal Australian and New Zealand College of Obstetricians and Gynaecologists. Patient Blood Management Guidelines Module 5: Obstetrics & Maternity. https://www.blood.gov.au/pbm-module-5 (2018 年 12 月現在)
- 10) American College of Obstetricians and Gynecologists. ACOG practice bulletin: clinical management guidelines for obstetrician-gynecologists number 183: postpartum hemorrhage. Obstet Gynecol, 130: e168—e186, 2017.

【その他の領域】CQ2 大量出血症例に対する massive transfusion protocol (MTP) は推奨されるか?また, FFP: PC: RCC の最適投与比はどれくらいか?

1) Recommendation

心臓血管外科,外傷,産科以外のその他の臨床領域における大量出血症例に対する massive transfusion protocol (MTP) は推奨される (2C). FFP: PC: RCC の最適投与比についてはエビデンスが不足していることから結論を保留する.

2) 推奨文の具体的な解説

血液製剤の使用指針では、「術中の大量輸血(24 時間以内に循環血液量の 100%以上の輸血を行うこと)時または 100ml/分以上の急速輸血をするような事態には、血液希釈による凝固因子や血小板数の低下のため、出血傾向が起こる可能性があるので、凝固系や血小板数の検査値および臨床的な出血傾向を参考にして、新鮮凍結血漿や血小板濃厚液の投与も考慮する」と記載されており、術中かなりの大量出血に遭遇した場合にのみ、新鮮凍結血漿や血小板濃厚液が考慮されることとなる。これに比して、大量出血による急性消費性、希釈性凝固障害の防止、もしくは早期改善を目的とする、大量輸血プロトコール(Massive transfusion protocol:MTP)による治療、すなわち、早期から先制的な新鮮凍結血漿(fresh frozen plasma:FFP)、血小板製剤(platelet concentrate:PC)の投与が、有効である可能性がある。一方、この方法は plasma の大量投与に繋がる可能性があり、急性肺障害や volume overload などの有害事象が引き起こされる懸念がある。したがって、MTP が推奨できるかどうか、また、推奨される場合には、RCC:FFP:PC の最適投与比はどれくらいかを検討する必要がある。

MTPが推奨されている米国では、大量出血症例もしくは、出血が進行し高度となる可能性が高い症例が入院した場合、輸血部門は、推奨される比率で、例えばあらかじめ事前に溶解しておきすぐに投与できるようにしておいた融解済み(Thawed)FFP6単位(米国の用量、本邦において約12単位)、赤血球6単位(本邦での約12単位)、もしくは血小板製剤やクリオプレシピテートが入った容器を用意しておき、迅速に供給するとともに、止血が完了するまで、この供給を繰り返し継続する必要が生じる。しかしながら本邦において、Thawed plasma、血小板製剤、クリオプレシピテートなどを常備しておいて、MTPを構築することは実用上ただちには困難であるため、引き続き課題としていくしかないと考える。

その他の領域は対象患者の heterogeneity が高いことを考慮する必要がある。この領域では RCT はなく、すべて後向き観察研究であり、before and after study における時代背景などの交絡因子や、「出血した患者に生血を投与」など見えない交絡因子の関与がエビデンス評価に重要な影響を与えている。まずいわゆる before and after study $^{1/2}$ は Historical cohort との比較であり、交絡因子による影響がありうることを考えると効果の推定値に強い確信はもてない。

アウトカムとして生存率を考えた場合、MTPを導入した研究において死亡率を論じた論文は3報存在する. 1 つの before and after study では先制的に FFP と PC 投与することで、大量出血患者の 30 日死亡率が低下 (20.4 vs 31.5: P=0.0002) であった 2 が、他の before and after study では院内死亡率は 29% vs 23%、P=0.46 で変わらなかった 1 . 新鮮全血(生血)を使用して介入した研究では死亡率(30 日死亡および 8 年生存率)は 変わらなかった 3 . 以上から死亡率に対する効果の推定値には強い確信はもてず、C とした.

負のアウトカムとしての MTR (massive transfusion response) の検討では、MTP 採用後の方が 24 時間後の FFP/RCC 比が高くなった(1:1.4 vs 1:2.4, P<0.001)¹⁾)。本研究では院内死亡率は 29% vs 23%, P=0.46 で変わらなかったが、この研究では MTP によって院内死亡率が改善するのかを明らかにすることを目的 としており、FFP/RCC 比と mortality の関係は解析されていない。 Sinha らの 2011 年の検討では FFP/RCC 比は単変量解析により死亡のリスクではなく、 Johansson らは FFP/RCC 比の影響を解析していない 2. 以上 から高 FFP/RCC 比が死亡率に悪影響を与えるかどうかについてはその他の領域では不明であった。

赤血球輸血量をアウトカムとした場合、生血の使用により、死亡率の減少効果のみならず赤血球輸血量の減少効果も証明できなかったと結論づけた観察研究 3 が相当する。この研究では患者背景は両群でそろっているものの、観察研究であることから比較可能性に影響を及ぼしうる、見えない交絡因子(たとえば、「この患者は出血しそうだから生血で治療しよう」などといった治療者の意図など)が残る。すなわち生血でむしろ赤血球輸血が増えている(RCC18.2 vs 15.9:P=0.014)のはそのような見えない交絡の可能性が高く、バイアスとして考慮する必要がある。

3) Summary of evidence

①観察研究

① 既奈		D 1.1	T	0 1	0.1
Study	Study type	Population	Intervention	Comparator	Outcomes
Sinha,					2007年に MTP を導入し, これ
2013					以後,主治医判断で MTP 発動
	after study	医判断でMTP発動	Protocol)		した患者を介入群、それ以前の
		した患者を介入群, そ			大量輸血患者群を比較群とす
		れ以前の大量輸血患			る. in hospital mortality (29%)
		者群を比較群とする.		た患者.	vs 23% P=0.46) で変わらず.
		AAA, Trauma,			MTP 導入前後の Before and
		Cardiac surgery,			After study であるが、死亡に
		Gastro-intestinal			有意差なし. (p=0.4) むしろカ
		bleeding, Othersur-			プランマイヤーでは pre MTP
		gery, Obstetric, Liver			の方が生存率高い(有意差な
		transplantation を 含			し).
		む.			FFP:RCC と PLT:RCC は
					MTP の方が有意に高い.
					MTP採用後の方が24時間後の
					FFP/RBC 比が高くなった (1:
					1.4 vs 1 : 2.4, P<0.001).
					介入:大量出血プロトコルとし
2009					て 2004 年以降以下を導入
		科, 外傷, 整形, 熱	· · · · · · · · · · · · · · · · · · ·		
	after study	傷, その他 (24 時間		なし)	2,5単位のFFPと2単位の血
		で 10 単位以上)	1,5単位のRBC		小板を用意し先制的に FFP と
			2,5単位のFFP		血小板使用
			と2単位の血小		このプロトコル前後の before
			板を用意し先制		and after study.
			的にFFPと血		先制的にFFPとPC投与するこ
			小板使用		とで、大量出血患者の30日死
					亡率が低下(20.4 vs 31.5:P=
					0.0002).
Но,		外傷,胸部心臟外科,	新鮮全血(生血)		
2011	き観察研究	腹部大動脈瘤, 熱傷,		投与なし	死亡率(30日死亡および8年生
		その他の手術, 上部消			存率)変わらず.
		化管出血, その他の内			生血でフィブリノゲン濃度は
		科疾患			有意に上昇(最低フィブリノゲ
					ン濃度 1.7g/l vs 1.4g/l=0.006,
					INR 2.4 vs 2.8 P = 0.05)
					赤血球輸血量は、生血でむしろ
					增加.

Sinha,	後ろ向き観察	2施設における大量	介入なしで	3グループ (1, 生き残りグルー
2011	研究	出血患者(24時間以	①ICU入室前後	プ2,24時間で死亡3,24時間
		内に10単位以上の	の Labo data	以降死亡)で比較. FFP/RCC
		RCC 輸血)	(INR,血小板	比は単比較で3群で同等. ICU
		外傷, 肝移植, AAA,	数, base deficit)	死亡に対する Logistic regres-
		胸部外科・心臓外科,	および輸血	sion の説明変数に FFP/RCC 比
		腹部外科,整形外科が	(RCC, FFP,	は含まれていないが、リスクと
			Platelet, クリ	して上がったのは ICU 入室時
		1998~2006年の238	オ, FFP/RCC,	の INR と最初の 24 時間の RCC
		人	Platelet/RCC	輸血.
			比)を網羅的に	
			記載	
			② 上 記 を 3 グ	
			ループ (1, 生き	
			残りグループ	
			2,24時間で死	
			亡 3, 24 時間以	
			降死亡)で比較	

文 献

- 1) Sinha R, Roxby D, Bersten A: Experience with a massive transfusion protocol in the management of massive haemorrhage. Transfus Med, 23: 108—113, 2013.
- 2) Johansson PI, Stensballe J: Effect of Haemostatic Control Resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang, 96: 111—118, 2009.
- 3) Ho KM, Leonard AD: Lack of effect of unrefrigerated young whole blood transfusion on patient outcomes after massive transfusion in a civilian setting. Transfusion, 51: 1669—1675, 2011.
- 4) Sinha R, Roxby D: Transfusion practices in massive haemorrhage in pre-intensive and intensive care. Vox Sang, 101: 230—236, 2011.

CQ3 大量輸血療法において Prothrombin Complex Concentrate (PCC) や recombinant activated factor VII (rFVIIa) の投与は推奨されるか?

【心臓血管外科】CQ3 大量輸血療法においてProthrombin Complex Concentrate (PCC) や recombinant activated factor VII (rFVIIa) の投与は推奨されるか?

1) Recommendation

rFVIIa の使用は動脈性血栓症の発生リスクを上昇させることから、出血軽減を目的とした予防的投与をおこなわないことを強く推奨する(1B). 人工心肺離脱後に危機的な出血に陥り、かつ通常の止血療法に不応である場合には、 $40\sim80\mu g/kg$ の rFVIIa の治療的投与を考慮することを弱く推奨する(2C). また、初回投与で十分な止血効果が得られない場合には、再投与をおこなわないことを推奨する(2B).

緊急心臓外科手術をうけるワルファリン服用患者が、ワルファリン効果の急性拮抗が必要と判断される場合には、PCCを使用することを強く推奨する.新鮮凍結血漿(FFP)に比較して、PCCは凝固因子の補充効率に優れており、迅速な拮抗効果が期待できる(1B).

ワルファリン非服用患者における複雑心臓手術において、人工心肺離脱後に危機的な出血に陥り、かつ通常の止血療法に不応である場合には、20~30IU/kgのPCC投与を考慮することを弱く推奨する(2C).

2) 推奨文の具体的な解説

心臓血管外科手術では、輸液製剤の大量投与や長時間の体外循環が契機となり、希釈性凝固障害から人工心肺離脱後に止血障害を認めることがある。また、複雑心臓手術では外科的出血の制御に苦慮することも稀ではなく、これら凝固障害と相まることで危機的な出血状況に陥ることがある。

2000年の販売開始から、血友病のバイパス療法に用いられる rFVIIa を心臓血管外科患者の止血管理に適用する報告が相次いだ¹⁾. rFVIIa は組織因子と複合体を形成することで、血管損傷部位における凝固反応の止血

機転として作用する。FVIIa を高い活性値まで上昇させることで、複合的な凝固因子欠乏により減弱したトロンビン活性を効果的に改善させることが可能である。心臓手術後の大量出血患者を対象にした第 II 相試験では、プラセボ対照に比較して、40 または $80\mu g/kg$ の rFVIIa は出血量と再開胸手術の頻度を有意に低下させた²⁾。Willis らは、オーストラリアとニュージランドの臨床データベースを用い、2005 年からの 4 年間に rFVIIa が使用されていた 804 名の心臓手術患者を遡及的に調査した³⁾。rFVIIa の使用量は、 $\leq 40\mu g/kg$, $41\sim60\mu g/kg$, $61\sim80\mu g/kg$, $81\sim100\mu g/kg$, $>100\mu g/kg$ の範囲で、それぞれ、42 名、107 名、104 名、368 名、183 名であったが、rFVIIa による止血反応が認められた割合は $83\sim91$ %で、28 日死亡率は $14\sim21$ %の範囲にあり、用量依存性の効果は明らかではなかった。また、初回投与で反応性がなかった患者に rFVIIa の再投与を行なっても十分な効果が期待できなことも指摘されている 3^{30} 。rFVIIa による止血効果と赤血球製剤の削減効果は明らかであるが、-方で予後の改善効果については明確なエビデンスを認めていない 3^{30} 。また、メタ解析結果から動脈血栓症の合併症リスクが指摘されていることから 3^{30} 。現在では rFVIIa の心臓外科手術患者への安易な使用には警鐘が鳴らされている 3^{30} 0。

PCC は血友病 B の止血薬として開発された経緯のある、ビタミン K 依存性凝固因子(第 II 因子、第 VII 因子、第 IX 因子、第 X 因子など)を高濃度に含有したヒト由来の凝固因子濃縮製剤である。現在では、多くの診療ガイドラインでワルファリン効果の急性拮抗に推奨されており、本邦でも 2017 年から保険適応を有した製剤が利用可能となっている。ワルファリン服用患者における心臓血管外科手術では5日程度の休薬期間を設けることが一般的ではあるが、適切な休薬期間を設けることが難しい緊急手術時にはワルファリンによる出血傾向が問題となる。従来ではビタミン K 製剤や FFP の輸注による拮抗治療が一般的であったが、これらでは拮抗の迅速性や凝固因子の補充効率の観点から問題を有している。 Sarode らは、ワルファリン効果の急性拮抗を必要とした患者を対象に、PCC(Beriplex、25~50IU/kg)を用いた拮抗群(n=98、median PT-INR [Prothrombin time-International normalized ratio]:3.9)と、FFP($10~15\,\text{ml/kg}$)を用いた拮抗群(n=104、median PT-INR:3.6)の 2 群を前向きに比較した。 同研究では、投与開始 30 分で PT-INR ≤ 1.3 に達した患者の割合は、PCC 群で 62.2% [95% CI、52.6~71.8]、FFP 群では 9.6% [95% CI、3.9~15.3] であり、PCC による拮抗治療の明らかな優位性が示された.

ワルファリン効果の急性拮抗に加えて、PCC はその複合的な凝固因子補充の効率性から、希釈性凝固障害の治療オプションとしても有効性が報告されている。Cappabianca らは、人工心肺離脱後の止血困難例に対して PCC (Uman Complex D.I., 1,500IU) が投与されていた PCC 投与患者 225 名、およびスコアマッチされた PCC 非投与患者 225 名(FFP:median 2 Units)を対象に遡及的に比較調査した¹⁰⁰. その結果、PCC 非投与群に比較して、PCC 投与群では 24 時間出血量および赤血球輸血量が有意に低下していた。一方、院内死亡率、再開胸手術率といった項目には、2 群間で有意な差を認めなかった。ワルファリン非服用患者における PCC の有効性を報告している観察研究をその他にも認めるが¹¹⁰¹²⁰、質の確保された無作為比較試験によるさらなるエビデンスの集積が求められる。

3) Practice points

心臓血管外科患者に対して安易な rFVIIa の使用は控えられるべきであるが,人工心肺離脱後に通常の止血治療に不応で,かつ危機的な出血状況と判断される場合においては使用を検討することは妥当と思われる. 救命の可能性があると臨床判断された症例に限定することに加え,現時点のエビデンスから, $\geq 80 \mu g/kg$ の高用量を用いることや頻回の投与を行うことは差し控えるべきである $^{4)13)14}$. 低体温やアシドーシスでは効果が著しく低下することから,rFVIIa 投与時には患者体温や酸塩基平衡を補正する. また,血小板数,フィブリノゲンなどの止血因子についても同時に是正することが重要である.

ワルファリン服用患者に対する急性拮抗では、その投与量決定や拮抗評価に PT-INR を用いた管理をおこなう。製剤の保険適用は PT/INR>2.0 であるが、本邦では欧米に比較して PT-INR を $1.5\sim2.0$ 程度と低い値で管理されている患者も少なくない 15 . これら患者での拮抗治療の是非は明らかでないが、臨床的な出血状況を鑑みて、患者の利害得失から決定されるべきであろう。現状の限られたエビデンスからは、ワルファリンの非服用患者の心臓外科手術においても、PCC による止血有効性が指摘される。しかしながら、生存率の改善や血栓性リスクについては明らかではなく、rFVIIa と同様に、人工心肺離脱後の危機的な出血状況に限定して、その使用を考慮すべきであろう。救命の可能性があると臨床判断される場合には、 $20\sim30$ IU/kg の PCC 投与を検討することは妥当である。なお、PCC は製剤内の第 VII 因子含有量により 4 factor-PCC と 3 factor-PCC に分類される。現在、本邦で利用可能なケイセントラ® (CSL ベーリング、東京) と PPSB-HT® (日本製薬株

式会社、東京)は第 VII 因子を高含有した 4 factor-PCC(4f-PCC)であるが、用いられる PCC の違いが臨床 転帰に及ぼす影響は明らかではない 16 .

なお、心臓手術患者に対してこれら製剤を適用外使用する場合、rFVIIaに比較して、PCCが同種血製剤の削減効果が高いという報告があるが¹²⁾、どちらの製剤を選択すべきかについては十分なエビデンスを認めていない。製剤投与に伴う血栓性合併症のリスクから、投与基準や用量の設定などについて、各施設内において十分な事前議論をおこなっておくことが求められる。

4) Summary of evidence

① RCT

Study	Study type		Intervention	Comparator	Outcomes
Gill,	phase II dose-	人工心肺手術を施行	40, および80μg/	蒸留水が投与さ	プラセボ群に比較して, rFVIIa
2009	escalation	された成人患者. 術	kg の rFVIIa が	れたプラセボ群	投与群で,同種血製剤を回避で
	RCT,	後,集中治療室におい	投与された患者	(n = 68).	きた患者割の合が有意に低下
	single-center.	て, ≥200ml/hr, また	(n = 35, and 69,		した.また,FVIIa 投与群で同
		は連続する2時間で,	respec-tively).		種血の必要量が有意に低下し,
		≥2ml/kg/hr の出血量			これには用量依存効果が認め
		が確認された場合に,			られた (40μg/kg vs. 80μg/kg
		試験薬を投与する.			vs. プラセボ群;640m <i>l</i> vs.
					500m <i>l</i> vs. 825m <i>l</i>).
Demeyere,	RCT,	準緊急手術によりワ	体重と PT-INR	人工心肺開始直	人工心肺終了から15分後の
2010	single-centeer.				PT-INR 値は,FFP 群に比較し
		緊急拮抗が必要と	れ た1,500~	ml, プロタミン	て、PCC 群で有意に低かった
		なった,心臓手術患	2,500IU の 4fac-	投与後にFFP	$ (Median : 2.4 \pm 0.5 \text{ vs. } 1.6 \pm) $
		者.	tor-PCC の半量	400ml の投与を	0.3). 拮抗後に追加量を必要と
			を人工心肺開始	行う FFP 投与	した患者数は FFP 群で 20/20
			直前に, 残り半	群 (n=20).	名であったのに対して, PCC 群
			量をプロタミン		で 6/20 名と有意に少なかった.
			投与後に分割投		
			与する PCC 投		
			与群 (n=20).		
1					治療開始後30分時において,
2013	RCT,				PT-INR≦1.3 を達成した患者割
	multi-center.				合は,PCC 群で FFP 群に比し
		· ·		· ·	て有意に高く (PCC 群: 62.2)
		18 歳以上の患者.			[52.6 to 71.8] % vs. FFP群:
			=98, median		9.6 [3.9 to 15.3] %),迅速な拮
			PT-INR : 3.9).		抗が可能であった. また, 止血
					の成功率も, PCC 群で高かった
					(PCC 群:72.4% vs. FFP 群:
					65.4%).

②観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Dunkley,	観察研究,	オーストラリア, およ	rFVIIaの投与	N/A.	84%の患者で, 一回目の rFVIIa
2008.	Nationwide	びニュージーランド	量の中央値は		投与で効果があった. この内の
	registry	国内の 48 病院から構	93 (82 to 102)		23%では止血が得られ,61%は
		成された臨床データ	μg/kg で あっ		出血の減弱を認めた. rFVIIa投
		ベースを利用して,	た. この内, 85%		与前に比較して,4単位(中央
		rFVIIa が投与されて			値) の赤血球製剤の削減効果を
		いた心臓外科手術患	与であり, 残り		認めた. 多変量解析の結果か
		者 304 名.	の15%では複		ら、低体温、アシドーシス、赤
			数回投与されて		血球輸血量が多い患者、ヘモグ
			いた.		ロビン値が低い患者では
					rFVIIa の効果減弱が認められ
					た.
Tanaka,	観察研究.				周術期における赤血球製剤,新
2013.					鮮凍結血漿, 血小板製剤, クリ
					オプレシピテートのいずれに
					おいても、PCCs 群で投与量が
					有意に少なかった [赤血球製剤
					の中央値, 5 (3~8.8) 単位 vs.
		リオプレシピテート	1 ' '		11 (7~14) 単位]. rFVIIa 群に
		20単位でも止血が得			比較して、術後12時間出血量
		られなかった状況で			は PCC 群で 49.6% 少なかった
		投与されていた.			[1,370 $(745\sim2,078)$ ml vs. 690
	hate also were also	New Market 2 man of the Company of t			(450~1,030) ml].
Cappabi-	観祭研究.				FFP 群に比較して、PCC 群で
anca, 2016.					は術後の24時間出血量が有意
			_	_	に低下していた (836 ± 1,226 vs.
					935 ± 583ml). PCC 群で, 赤血
					球輸血の投与患者数 [(OR 0.50
					(0.31~0.80)]と, 投与量[-1.42
					(-2.06 to -0.77) 単位] が有意
		象にしたもの.			に低下していた.
			1,500IU であっ	あった.	
			た.		

文 献

- 1) Logan AC, Yank V, Stafford RS: Off-label use of recombinant factoVIIa in U.S. hospitals: analysis of hospital records. Ann Intern Med, 154: 516—522, 2011.
- 2) Gill R, Herbertson M, Vuylsteke A, et al: Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery. Circulation, 120: 21—27, 2009.
- 3) Willis C, Bird R, Mullany D, et al: Use of rFVIIa for critical bleeding in cardiac surgery: dose variation and patient outcomes. Vox Sang, 98: 531—537, 2010.
- 4) Willis CD, Cameron PA, Phillips L: Variation in the use of recombinant activated factor VII in critical bleeding. Intern Med J, 40: 486—493, 2010.
- 5) Simpson E, Lin Y, Stanworth S, et al: Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev, CD005011, 2012.
- 6) Vincent JL, Rossaint R, Riou B, et al: Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding-a European perspective. Crit Care, 10: R120, 2006.
- 7) Kozek-Langenecker SA, Ahmed AB, Afshari A, et al: Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol, 34: 332—395, 2017.

- 8) Demeyere R, Gillardin S, Arnout J, et al: Comparison of fresh frozen plasma and prothrombin complex concentrate for the reversal of oral anticoagulants in patients undergoing cardiopulmonary bypass surgery: a randomized study. Vox Sang, 99: 251—260, 2010.
- 9) Sarode R, Milling TJ, Jr., Refaai MA, et al: Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation, 128: 1234—1243, 2013.
- 10) Cappabianca G, Mariscalco G, Biancari F, et al: Safety and efficacy of prothrombin complex concentrate as first-line treatment in bleeding after cardiac surgery. Crit Care, 20: 5, 2016.
- 11) Arnekian V, Camous J, Fattal S, et al: Use of prothrombin complex concentrate for excessive bleeding after cardiac surgery. Interact Cardiovasc Thorac Surg, 15: 382—389, 2012.
- 12) Tanaka KA, Mazzeffi MA, Grube M, et al: Three-factor prothrombin complex concentrate and hemostasis after high-risk cardiovascular surgery. Transfusion, 53: 920—921, 2013.
- 13) Masud F, Bostan F, Chi E, et al: Recombinant factor VIIa treatment of severe bleeding in cardiac surgery patients: a retrospective analysis of dosing, efficacy, and safety outcomes. J Cardiothorac Vasc Anesth, 23: 28—33, 2009.
- 14) Alfirevic A, Duncan A, You J, et al: Recombinant factor VII is associated with worse survival in complex cardiac surgical patients. Ann Thorac Surg, 98: 618—624, 2014.
- 15) Zemrak WR, Smith KE, Rolfe SS, et al: Low-dose Prothrombin Complex Concentrate for Warfarin-Associated Intracranial Hemorrhage with INR Less Than 2.0. Neurocrit Care, 27: 334—340, 2017.
- 16) Ogawa S, Szlam F, Ohnishi T, et al: A comparative study of prothrombin complex concentrates and fresh-frozen plasma for warfarin reversal under static and flow conditions. Thromb Haemost, 106: 1215—1223, 2011.

【外傷】CQ3 大量輸血療法において Prothrombin Complex Concentrate (PCC) や recombinant activated factor VII (rFVIIa) の投与は推奨されるか?

1) Recommendation

外傷患者の大量輸血療法において、適応外での PCC の投与が推奨されるかどうか現時点では不明である(D).

外傷患者の大量輸血療法において、適応外での rFVIIa は投与しないことを弱く推奨する (2C).

2) 推奨文の具体的な解説

外傷により大量出血を呈している患者に対して PCC や rFVIIa を投与することは、日本においては多くの場合適応外使用となるが、臨床の現場ではときに行われており重要な CQ である.

外傷患者の大量輸血療法において、PCC の投与が推奨されるかについての CQ に対して採用されたのは 2 つの観察研究 $^{1/2}$ のみであった。介入はそれぞれフィブリノゲン濃縮製剤に PCC を追加した群間比較である。投与の指標に TEG(thromboelastography)を用いているが、その閾値は異なっており、深刻な非直接性を認めた。 さらに、深刻なバイアスリスクも認められた。 PCC 投与と死亡率の関連性については非一貫性を認めた。 従って、現時点では PCC を投与することと死亡率の明らかな関連は認められないと結論付けられる。

輸血必要量(または赤血球輸血量)に関しては、採用された 2 編 12 において、PCC 投与前後による輸血必要量減少が示されたものと、増加したものがあった。 2 編ともサンプル数も少なく、比較対象、介入も異なるため深刻なバイアスリスク、非直接性を認めるため評価は困難と判断した。 (D)

同種血輸血回避率に関しては、採用された 2 編 12 における介入はフィブリノゲン濃縮製剤と PCC を組み合わせた投与と FFP 単独との比較であり、フィブリノゲン濃縮製剤と PCC を組み合わせて投与した群は、FFP 単独で投与した群と比較して、赤血球輸血が回避できた割合が高かった(29% vs 3%、P<0.0001). しかし、深刻な非直接性を認めるため PCC の効果としての評価は困難と判断した.

想定される不利益である血栓塞栓症の発症については、PCC の投与の有無で比較検討したデータがない. 従って、外傷患者の大量輪血療法において PCC の投与による益および不利益のアウトカムがともに不明であり、推奨を明らかにすることができない、将来的な研究が必要な状況と判断した. (D)

次に、外傷患者の大量輸血療法における rFVIIa 投与に対するエビデンスとして、外傷患者と外傷患者以外も含めたメタ解析 1 編³、外傷患者を対象とした RCT2 編^{4/5}、RCT⁴⁾のサブグループ解析である観察研究 1 編⁶⁾と非血友病に対して rFVIIa が投与された患者を対象とした観察研究 1 編⁷⁾を採用した、外傷患者群では、外

傷により大量出血を呈している患者に対して、rFVIIaを投与するかしないかの2群比較が行われていた.

採用されたメタ解析 1 編 $^{\circ}$ と RCT2 編 $^{\circ}$ 5 において,rFVIIa 投与と主要なアウトカムである死亡率(または生存率),輸血必要量(または赤血球輸血量),ICU 滞在日数,人工呼吸必要期間,血栓塞栓症との関連性については,非直接性はあるものの,対象の年齢制限や rFVIIa 投与法等の違いを考慮すれば許容できる範囲と判断した.また採用した RCT2 編 $^{\circ}$ 5 でランダム化の過程が一部不明瞭ではあるものの,バイアスリスクは少ないと考えられた.

採用された観察研究 2 編 67 においては,rFVIIa 投与と主要なアウトカムである死亡率(または生存率),輸血必要量(または赤血球輸血量),ICU 滞在日数との関連性については,いずれも深刻なバイアスリスクと深刻な非直接性があると考えられた.

rFVIIa 投与と死亡率の関連性については、採用されたメタ解析 1 編 9 、RCT2 編 45 と観察研究 2 編 67 いずれにおいても関連性が示されておらず、非一貫性はないと判断された。従って、rFVIIa 投与による死亡率の有意な低下はなかったと結論付けられる。

rFVIIa 投与と輸血必要量,特に赤血球輸血量に関しては,採用されたメタ解析 1 編 3 と RCT2 編 45 のいずれにおいても rFVIIa 投与群で少ないことが示され,非一貫性はないと判断された.採用された観察研究 2 編 677 においても,rFVIIa 投与と輸血必要量と赤血球輸血量に関連性が認められた.従って,rFVIIa 投与によって,輸血必要量,特に赤血球輸血量が有意に低下したと結論付けられる.

rFVIIa 投与と ICU 滞在日数について、RCT2 編^{4/5)}のいずれも rFVIIa 投与群と非投与群に差は認められなかった.

想定される不利益である血栓塞栓症の発症については、対象を外傷患者だけに絞った RCT2 編 450 において、rFVIIa 投与群で増加していなかった。観察研究 1 編 60 においても同様な結果であり、対象の年齢制限や rFVIIa 投与法等の違いから非直接性はあるものの、臨床的には許容できる範囲と考えた。しかし、外傷と外傷以外も対象とした研究のメタ解析 50 によると、血栓塞栓症全体としての発生リスクは有意ではないものの(RR 1.35;95% CI:0.82~2.25)、動脈血栓症は有意に増加した(RR 1.45;95% CI:1.02 to 2.05)。

従って、外傷患者の大量輸血療法における rFVIIa 投与が推奨されるかについては、益のアウトカムである 輸血必要量の減少が認められる一方で死亡率の改善が認められず、不利益のアウトカムである動脈血栓塞栓症 の有意な増加が認められるため、適応外の状況においては rFVIIa を投与しないことを弱く推奨する. (2C) 他のガイドラインにおける推奨:

Canada の大量出血症例に対する rFVIIa 投与に関するガイドライン®では、死亡率の改善を認めず、動脈血栓症が増加することから、鈍的・穿通性いずれの外傷に対しても rFVIIa 投与は推奨されておらず、適応外で使用することは行うべきでないとしている。同ガイドラインでは Levi らの論文®において、外傷患者を対象とした RCT4 研究(今回採用した RCT®のサブグループ解析である観察研究®を含む)を含めた 26RCT と健常者を対象とした 9 研究の結果を統合して、動脈血栓発症率が rFVIIa 使用群において有意に多く(5.5% vs 3.2%、p=0.003)、特に冠動脈イベントが高率であったとしている(2.9% vs 1.1%、p=0.002)。静脈性血栓については、差がないとしている(5.3% vs 5.7%)。今回採用した外傷関連の RCT は 2 編しかなく症例数が少なかったことから、動脈血栓症の発症に差が見られなかった可能性が高い。

3) Practice points

大量輸血療法として PCC や rFVIIa を投与することは、日本においては多くの場合に適応外使用となる点に十分な注意が必要である.

4) Summary of evidence

① meta-analysis

Study	Study type	Population	Intervention	Comparator	Outcomes
Simpson,	meta-analysis	血友病でない活動性	rFVIIa 投与	rFVIIa非投与	29 編の RCT が採用された. こ
2012		出血を呈している患		(プラセボ)	のうち28編は、2重盲検無作為
		者			化試験であったが、治療的なも
					のと予防的なものが混在して
					いた. 死亡率に関しての有効性
					は認めなかった (RR 1.04, 95%
					CI:0.55~1.97). 出血量と赤血
					球輸血量については, rFVIIa投
					与により有意に減少した(各々
					mean difference (MD); -297,
					95% CI: −416~ −178, MD;
					$-261,95\% \text{ CI}: -367 \sim -154).$
					しかし、この結果については情
					報がない4つの RCT が含まれ
					ていないため、過大評価された
					可能性がある.輸血をした患者
					数については, rFVIIa投与で減
					る傾向にあったが (RR 0.85,
					0.72~1.01), 血栓塞栓症につい
					ては反対に増加する傾向で
					あった (RR1.35, 0.82~2.25).
					血栓塞栓症についての検討で,
					動脈血栓症は rFVIIa 投与によ
					り有意に増加していた(RR
					$1.45, 1.02 \sim 2.05$).

② RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Boffard,	国際多施設研	16歳から65歳までの	rFVIIa投 与	rFVIIa非投与	48時間以内の輸血必要量は
2009	究 (32 施設) ラ	重症外傷患者かつ4	$(200 \mu g/kg,$	(プラセボ)	rFVIIa 投与群で有意に少なく,
	ンダム化比較	時間で赤血球輸血6	$100\mu\mathrm{g/kg}$,		特に生存した鈍的外傷患者で
	試験	単位以上の輸血	100μg/kg Ø 3		は赤血球輸血量は2.6単位
			段階投与)		(95% CI: 0.7~4.6) 少なかった
					(P=0.02). 新鮮凍結血漿輸血
					量、血小板輸血量もともに
					rFVIIa投与群で有意に少な
					かった. 死亡率については有意
					差を認めなかったが、rFVIIa投
					与は 30 日間の低い ARDS 発生
					率と MOF 発生率に関連してい
					た.

Hauser,	ランダム化比	18歳から70歳までの	rFVIIa 投 与	rFVIIa非投与	30日死亡率は, 鈍的外傷, 鋭的
2010	較試験	体幹及び近位部四肢	$(200 \mu g/kg,$	(プラセボ)	外傷ともに2群間で差はなかっ
		骨折で赤血球輸血を	$100\mu\mathrm{g/kg}$,		た(鈍的;rFVIIa:11.0%, プ
		4単位した重症外傷	100μg/kg Ø 3		ラセボ:10.7%, 鋭的;rFVIIa:
		患者(ショック, アシ	階投与)		18.2%, プラセボ:13.2%). 24
		ドーシス,割り付けま			時間以内の輸血必要量につい
		で11以上の輸液を			ても2群間で差はなかった(平
		行っている患者が含			均赤血球輸血単位数;鈍的
		まれる)			rFVIIa: 6.9, 鈍的プラセボ 8.1,
					鋭的 rFVIIa:4.2, 鋭的プラセ
					ボ:6.2). 血栓塞栓症の発生率
					についても、2群間で差はな
					かった(鈍的外傷;rFVIIa
					16.1%, プラセボ:13.2%, 鋭的
					外傷 : rFVIIa 4.3%, プラセボ :
					10.0%).

③観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Schlimp,	後ろ向き観察	フィブリノゲン製剤	FC単独, FC+	なし	3 群間比較では,FC-PCC-FFP
2013	研 究 (157 症	(FC) が投与された重	PCC投与, FC+		投与群でフィブリノゲン濃度
	例)	症外傷患者	PCC+FFP 投		が低かったが、いずれの群でも
			与		フィブリノゲン濃度は維持さ
					れていた. FC-PCC-FFP 投与群
					で最も赤血球輸血量は有意に
					多かった.
Schochl,	後ろ向き観察	18歳から70歳までの	Thromboerasto-	FFPのみを投	止血治療中に FFP 群 (平均 ISS
2011	研究, フィブ	ISS16以上, 来院時	metry で凝固異	与していたドイ	35.5) では,6単位(中央値)の
	リノゲン製剤	base excess -2	常を認めた場	ツ外傷レジスト	FFP が投与されていた. FC+
	FC と PCC を	mmol/1以下の外傷患	合,FC と PCC	リデータ(FFP	PCC 群(平均 ISS 35.2)では,
	用 い た TEM	者(胸腹部・四肢	を投与するプロ	群:601 症例)	FC6g と PCC 1,200 単位(とも
	ガイド止血療	AIS3 以上,頭部頸部	トコル(オース		に中央値)が投与された.赤血
	法(FC-PCC	AIS5 未満)	トリアの単施		球輸血回避率は、FC+PCC群
	群:80 症例)		設)		が FFP 群と比較して有意に高
					かった(29% vs 3%, P<0.001).
					血小板輸血回避率も, 同様に
					FC-PCC 群で有意に高かった
					(91% vs 56%, P<0.001). 死
					亡率に関しては両群間に差を
					認めなかった (FC+PCC:
					7.5%, FFP: 10%, P=0.69).

文 献

- 1) Schochl H, Nienaber U, Maegele M, et al: Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care, 15: R83, 2011.
- 2) Schlimp CJ, Voelckel W, Inaba K, et al: Impact of fibrinogen concentrate alone or with prothrombin complex concentrate (+/-fresh frozen plasma) on plasma fibrinogen level and fibrin-based clot strength (FIBTEM) in major trauma: a retrospective study. Scand J Trauma Resusc Emerg Med, 21: 74, 2013.
- 3) Simpson E, Lin Y, Stanworth S, et al: Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev, CD005011, 2012.
- 4) Boffard KD, Riou B, Warren B, et al: Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma, 59: 8—15, discussion 15—18, 2005.

- 5) Hauser CJ, Boffard K, Dutton R, et al: Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma, 69: 489—500, 2010.
- 6) Rizoli SB, Boffard KD, Riou B, et al: Recombinant activated factor VII as an adjunctive therapy for bleeding control in severe trauma patients with coagulopathy: subgroup analysis from two randomized trials. Crit Care, 10: R178, 2006.
- 7) Isbister J, Phillips L, Dunkley S, et al: Recombinant activated factor VII in critical bleeding: experience from the Australian and New Zealand Haemostasis Register. Intern Med J, 38: 156—165, 2008.
- 8) Lin Y, Moltzan CJ, Anderson DR: The evidence for the use of recombinant factor VIIa in massive bleeding: revision of the transfusion policy framework. Transfus Med, 22: 383—394, 2012.
- 9) Levi M, Levy JH, Andersen HF, et al: Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med, 363: 1791—1800, 2010.

【産科】CQ3 大量輸血療法において Prothrombin Complex Concentrate (PCC) や recombinant activated factor VII (rFVIIa) の投与は推奨されるか?

1) Recommendation

rFVIIa 投与は現状で実施できる凝固障害に対する全ての輸血治療に反応せず、生命の危機を伴う産科危機的出血の妊産褥婦に限定して推奨する (2C).

産科出血における PCC の臨床応用、研究はなく推奨はしない(D).

2) 推奨文の具体的な解説

rFVIIa は高濃度の第 VIIa 因子の存在下に、第 X 因子を第 VIIa 因子が直接活性化させ、トロンビンバーストを引き起こして大量のトロンビンを産生する。トロンビンは、組織因子の存在下に、血管損傷部位の修復と、活性化血小板で血栓を形成し局所的な止血を促す。産科大量出血では、産科 DIC をしばしば発症し止血不能に陥るために rFVIIa の止血効果が期待されていた。我が国でも、全ての治療が奏功しない極めて死に近い重篤な産科大量出血妊産褥婦に限定し投与され救命例が報告されている。

本領域での介入研究はLavigne-Lissalde らによって行われた1研究のみで、本ガイドラインの対象となるような、産科大量出血患者を対象とした研究ではない。実臨床で使用される重篤な産科大量出血の妊産褥婦に対してのRCT は倫理的に不適切であり、これまでもまた今後もRCT が実施されることはないと考えられる。したがって、本ガイドラインの対象である産科大量出血患者における現時点におけるエビデンスは、ほとんどの研究が後方視的観察研究であるため症例の重症度が偏り、エビデンス評価に影響を与えている可能性がある。その中でも症例の重症度が調節された(propensity score matching や matched case)研究が質の高い研究といえる。

唯一の介入研究はLavigne-Lissalde らによって行われた,多施設共同無作為試験(オープンラベル)の妊産婦死亡を含まない 1 研究¹⁾であり,子宮収縮抑制剤に反応しない 48 名の重症 PPH 患者のうち,ランダム化された早期の rFVIIa($60\mu g/kg$)の単回投与が行われた 42 名と,通常治療が行われた 42 名の比較を行い,rFVIIa の投与は通常治療が行われたコントロール群と比較し外科的介入である second-line therapies の必要患者数の有意な減少を認めたと報告している.コントロール群では 39/42(93%)の患者が second-line therapies を受けたのに対し介入群では 22/42(52%)が second-line therapies を受けた.分娩様式は結果に影響しなかった.輸血必要量において各群で有意差を認めなかった.有害事象については介入群で 2 例の深部静脈血栓症を認めたが,発症率については 2 群間で有意差を認めなかった.

死亡率への rFVIIa が与える影響については,介入研究 1 研究 1 では死亡例がなく評価できなかった.比較対照のある観察研究では 2 、rFVIIa 投与群で死亡率は減少した.比較検討がない観察研究での死亡率は,24 時間以内の死亡率が 14%,30 日以内の死亡率が 32% 3 ,56%(出血先行型が 46%,手術先行型が 62% 4 死亡例なし 5 、11.1% 6 、15% 7 と報告されていたが,産科疾患ではその他の領域に比べ死亡率は低く,死亡率を減らす傾向にあると考えられた.

出血量への rFVIIa が与える影響については、比較対照研究はなく、医師の主観的な評価ではあるが、4 研究 $^{3(6)8)9}$ 全てで、80%台の出血量減弱効果を示しているため、出血量は減ずる傾向にあると考えられた.

必要輸血量については,介入研究 1 研究 1 で必要輸血量の差は認められず,観察研究では rFVIIa の投与後に必要輸血量が減じている報告を 3 報 $^{3(4(9)}$ 認めた.したがって rFVIIa の投与は必要輸血量を減ずる可能性があると考えられた.

出血が持続するための再手術への rFVIIa が与える影響については、介入研究¹¹で有意に減少した. (rFVIIa 群 41% vs control 52%)

止血成功率の評価は観察研究のみであった。Kalina らは 89%に出血の減少または止血を認め 5 , Isbister らは 69%で出血の減少または止血を認め 7 , Kobayashi らは、最終出血は 16人の患者(64%)で「止血」、8人の患者(32%)で「減少」、1人の患者(4%)で「変化していない」という結果であった 9 . したがって、69~96%の症例が止血されたか明らかな出血量減少効果を認めており、止血効果があると考えられた。

他の領域で指摘されていた rFVIIa の合併症である血栓塞栓症については、介入研究では rFVIIa 投与群 42 例中 2 例 (卵巣静脈血栓症、深部静脈血栓症)に血栓塞栓症が認められ 10 、コントロール群には認められなかったが、2 群間で有意差は認めなかった。観察研究では、0%⁵、1.3%⁷、2.7%³、3.4%⁸に血栓塞栓症を認めた、rFVIIa の投与により血栓塞栓症は低率ではあるが発症する可能性があると考えられた。

観察研究による rFVIIa の死亡率を減らす傾向,出血量を減ずる傾向,必要輸血量を減ずる可能性,出血が持続するための再手術の減少効果,止血効果から弱い根拠によるため「条件付きで推奨」(2C) とした.血栓塞栓は一定の頻度で起こりうる合併症であるので,生命の危機を伴う産科危機的出血などの緊急避難的な場合に限定し,しかも血栓塞栓症に対応できる施設において rFVIIa は使用されるべきである.他のガイドラインにおける推奨:

Royal Australian and New Zealand College of Obstetricians and Gynaecologists のガイドライン 10 では、生命が脅かされている大量出血患者への rFVIIa の投与が考慮されるとしている。ただしその投与は既存の外科的止血術や適切な輸血治療が不成功に終わった場合という条件を挙げている。また recombinantVIIa の投与は MTP の一貫として凝固、代謝、体温などの観察パラメータの厳密な管理のもとに $90\mu g/kg$ での投与を提案している。RCOG Green-top Guideline 11 では rFVIIa の日常的な使用は、臨床試験の一部でない限り、主要な PPH の管理には推奨されないとしている。ACOG PRACTICE BULLETIN 12 では、産科出血に対する rFVIIa の投与は第一選択治療と考えられておらず、数度にわたる大量輸血プロトコールの後の最終的な状況において 産科大量出血の専門家へのコンサルテーションのうえで使用されることが考慮されるとしている。

3) Practice points

本剤の投与は、血栓塞栓症のリスクを伴っているため、生命の危険性のある重篤例でしかも現状で実施できる凝固障害に対するあらゆる輸血治療に反応しない症例に限定される。rFVIIa の効果は十分量のフィブリノゲンが理論的に必要であることから、フィブリノゲン値を上昇させた上で使用するべきである。また、我が国では rFVIIa は現在オフラベルであるため、使用に際しては本人・家族に十分なインフォームドコンセントが不可欠である。

4) Summary of evidence

① RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Lavigne-	ランダム化比	子宮収縮抑制剤に反	60 μ g/ k g の	ランダム化のの	両群において死亡例は認めな
Lissalde,	較試験(オー	応しない 48 名の重症	rhuFVIIaの 早	ちに通常治療が	かった.rhuFVIIa の投与は通
2015	プンラベル)	PPH の患者のうち,	期の単回投与	行われた 42 名.	常治療が行われたコントロー
		ランダム化された早			ル群と比較し second-line ther-
		期のrhuFVIIaの単回			apies の必要患者群の減少を認
		投与が行われた 42 名			めた.特にコントロール群では
		と通常治療が行われ			39/42(93%)の患者が second-
		た 42 名. 重症 PPH は			line therapies を受けたのに対
		分娩後 24 時間以内に			し介入群では 22/42(52%)が
		1,500ml 以上の出血を			second-line therapies を受け
		認めたものと定義.			た. (absolute difference, 41%;
					range, 18~63%; RR, 0.56
					[0.42~0.76]). 分娩様式は結果
					に影響しなかった. RCCsと
					FFPs の輸血必要量は通常治療
					と介入治療において, 輸血必要
					量は各群で有意差を認めな
					かった. rhuFVIIa armでは2
					例の静脈血栓症が記録された.
					1 例は卵巣静脈血栓症, 1 例は
					肺血栓塞栓症を伴わない深部
					静脈血栓症であった.

②観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Hossain,					rFVIIa group では 22%の患者
2007	究	例. 産科大量出血患者	投与を受けてお	されていない	が死亡. non-rFVIIa groupでは
		は 1,500m 以上の出	り,8名は3.6mg	16 例	50%の患者が死亡. rFVIIaの投
		血, Hb 40g/以下 l,	10名は4.8mgの		与後,aPTT の著明な短縮を認
		10 単位以上の輸血を	投与. うち3名		めた. PT についても同様に有
		要した患者と定義	は2回目の投与		意な短縮をみとめた. Hbや
			を 2.4mg で 3h		aPTT によって患者重症度を調
			あけて行われて		整した後の比較で, 患者死亡率
			いる.		は 96%減少した.

文 献

- 1) Lavigne-Lissalde G, Aya AG, Mercier FJ, et al: Recombinant human FVIIa for reducing the need for invasive second-line therapies in severe refractory postpartum hemorrhage: A multicenter, randomized, open controlled trial. J Thromb Haemost, 13: 520—529, 2015.
- 2) Hossain N, Shansi T, Haider S, et al: Use of recombinant activated factor VII for massive postpartum hemorrhage. Acta Obstet Gynecol Scand, 86: 1200—1206, 2007.
- 3) Schmid P, Mordasini A, Luginbuhl M, et al: Low-dose recombinant factoVIIa for massive bleeding: a single centre observational cohort study with 73 patients. Swiss Med Wkly, 141: w13213, 2011.
- 4) Berkhof FF, Eikenboom JC: Efficacy of recombinant activated Factor VII in patients with massive uncontrolled bleeding: a retrospective observational analysis. Transfusion, 49: 570—577, 2009.
- 5) Kalina M, Tinkoff G, Fulda G: Massive postpartum hemorrhage: recombinant factor VIIa use is safe but not effective. Del Med J, 83: 109—113, 2011.
- 6) Bouma LS, Bolte AC, van Geijn HP: Use of recombinant activated factor VII in massive postpartum haemorrhage. Eur J Obstet Gynecol Reprod Biol, 137: 172—177, 2008

- 7) Isbister J, Phillips L, Dunkley S, et al: Recombinant activated factor VII in critical bleeding: experience from the Australian and New Zealand Haemostasis Register. Intern Med J, 38: 156—165, 2008.
- 8) Willis CD, Cameron PA, Phillips L: Variation in the use of recombinant activated factor VII in critical bleeding. Intern Med J, 40: 486—493, 2010.
- 9) Kobayashi T, Nakabayashi M, Yoshioka A, et al: Recombinant activated factor VII (rFVIIa/NovoSeven (R)) in the management of severe postpartum haemorrhage: initial report of a multicentre case series in Japan. Int J Hematol, 95: 57—63, 2012.
- 10) Patient Blood Management Guidelines: Module 5 Obstetrics and Maternity. 2015.
- 11) Prevention and Management of Postpartum Haemorrhage: Green-top Guideline No. 52. BJOG, 124: e106—e49, 2017.
- 12) Committee on Practice Bulletins Obstetrics. Practice Bulletin No. 183: Postpartum Hemorrhage. Obstet Gynecol, 130: e168—e186, 2017.

【その他の領域】CQ3 大量輸血療法において Prothrombin Complex Concentrate (PCC) や recombinant activated factor VII (rFVIIa) の投与は推奨されるか?

1) Recommendation

ワルファリン内服患者に対し、緊急性が高く出血の予想される侵襲的処置・手術を施行する場合、術前に PT-INR を測定したうえで 4 因子含有プロトロンビン複合体製剤(4f-PCC)とビタミン K による拮抗を行うことを推奨する(1B).

非ワルファリン患者の大量出血における 4f-PCC の投与に関しては推奨に至るエビデンスはない (D). 大量出血症例において rFVIIa の投与を行わないことを推奨する (2D).

2) 推奨文の具体的な解説

4f-PCC および rFVIIa は両者ともにトロンビン産生を促進する製剤であり、凝固因子の欠乏した大量出血患者では止血能を改善する可能性がある。一方で大量出血患者ではトロンビンの適切な制御に重要なアンチトロンビンも低下しており、過剰なトロンビン産生は血栓症を惹起する可能性が考えられる。 さらに、4f-PCC はワルファリンなどのビタミン K 拮抗薬(vitamin K antagonist:VKA)の緊急拮抗に、rFVIIa は先天性第 VII 因子欠乏症および血友病患者、グランツマン血小板無力症に対し適応となっているが、大量出血による後天性凝固因子欠乏症は適応外となる。両製剤はともに高価な凝固因子製剤であり、その投与に際しては熟慮が必要である。したがって、大量出血症例において 4f-PCC または rFVIIa が推奨されるか否かを CQ とした.

本 CQ においては大量出血または大量出血が見込まれる心臓外科・外傷・産科患者以外を対象とした。また、介入は PCC または rFVIIa 投与とし、血漿投与患者またはこれらの製剤を投与しなかった患者を対照群とした。28 日(または 30 日)死亡率、院内死亡率を主要評価項目とし、出血量、輸血必要量、同種血輸血回避率、血栓塞栓症を副次評価項目とした。

緊急的に侵襲的処置または手術を必要とする VKA 服用患者において、4f-PCC または血漿の術前投与による凝固能改善を比較した RCT では 1 、心臓外科手術以外でも 4f-PCC 群で有意な PT-INR の改善(INR \leq 1.3)を認め [整形外科手術:55% vs 13% (P=0.0158)、その他の手術:54% vs 4% (P<0.0001)]、有効な止血効果が得られた [整形外科手術:80% vs 60% (P=0.27)、その他の手術:92% vs 74% (P=0.0279)]。また、45 日以内の死亡率 (3% vs 9%)や血栓塞栓イベント (7% vs 8%)において有意差を認めなかった。したがって、VKA の拮抗においては 4f-PCC の予防投与は合併症を増加させることなく、凝固能の回復を図ることが可能である。心臓外科・外傷・産科以外の領域において、非 VKA 患者の大量出血に対する 4f-PCC の有効性を検証した報告は非常に少ない。手術患者の出血に対し 4f-PCC を投与した観察研究(N=38)では 4f-PCC 投与後に PT-INR が改善し 30 名(79%)の患者で止血が得られたと報告されているが、22 名(58%)は 4f-PCC 投与後も輸血が継続されている 2 。また、肝移植患者を対象とした観察研究では propensity score マッチングを行った対照群と比較して 4f-PCC の投与は輸血量を減少させなかった 3 。現時点では、4f-PCC の投与が死亡率・出血量・輸血必要量・血栓塞栓症に及ぼす影響を一定のエビデンスレベルで評価することはできない。

肝硬変患者の肝部分切除において、rFVIIa の予防的投与の有効性を評価した RCT^{40} では、皮膚切開前から 2 時間間隔で rFVIIa 50 μ g/kg または 100μ g/kg を投与した群とプラセボ群との間で出血量・輸血量に有意差を認めず、死亡を含む重篤な合併症にも有意差は認めなかった。また、肝移植を対象としたメタ解析⁵⁰では、60 日以内の死亡率 [rFVIIa 群 vs 対照群:4.1% vs 2.2%,RR 1.51 (95% CI 0.33 \sim 6.95)] や血栓塞栓症 [13.0% vs 9.9%,RR 1.38 (95% CI 0.65 \sim 2.91)] において有意差を認めなかった一方で、輸血量にも有意差はなかっ

た. 心臓外科手術や外傷を含むメタ解析®では、予防的投与・治療的投与のいずれにおいても死亡率を改善しなかったが{予防投与:RR 1.04(95% CI 0.55~1.97、治療投与:RR 0.91(95% CI 0.78~1.06))},赤血球製剤の投与量は予防的投与で減少した[予防投与:-260.78(95% CI-367.30~-154.27)].一方,血栓塞栓症は rFVIIa の投与で増加しなかったが [RR 1.18(95% CI 0.94~1.48),P=0.15],動脈血栓塞栓症は rFVIIa 投与で増加することが示された [RR 1.45(95% CI 1.02~2.05),P=0.04].少なくとも肝臓手術の領域においては有益な効果は得られない一方で,動脈血栓症が懸念される.

他のガイドラインにおける推奨:

ヨーロッパ麻酔科学会の周術期大量出血管理ガイドラインにおいても、ワルファリン内服患者が侵襲的処置を受ける際は PT-INR を測定したうえで 4f-PCC を投与することが強く推奨されている(1B). rFVIIa に関しては、予防的投与には強く反対している一方で(1B)、あらゆる手段をもってしても止血が不能で生命に危険が及ぶ場合は投与を考慮してもよいと記載されているが推奨度は低い(2C)".

3) Practice points

4f-PCC はワルファリンの拮抗薬として日本でも承認されたため、一定の規模以上の医療機関では常備されると思われるが、rFVIIa の適応は血友病などの血液疾患のみであり、常備できる医療機関は限定される。いずれの製剤もトロンビン産生を促進する製剤であり、止血に必要な最終基質であるフィブリノゲン濃度が十分でなければ止血効果を得られない可能性が高い。

4) Summary of evidence

① meta-analysis

Study	Study type	Population	Intervention	Comparator	Outcomes
Gurusamy,	肝移植 33 トラ	肝移植患者	recombinant	コントロール	60日以内の死亡率{rFVIIa群
2011	イアル	(rFVIIa vs コント	VIIa		vs 対照群:4.1% vs 2.2%, RR
		ロールは3つのRCT)			1.51 (95% CI 0.33~6.95)} や血
					栓塞栓症 { 13.0% vs 9.9%, RR
					1.38 (95% CI 0.65~2.91)} にお
					いて有意差を認めなかった一
					方で、輸血量にも有意差はな
					かった.
Simpson,		血友病を除くすべて	recombinant		心臓外科手術や外傷を含むメ
2012	患者の出血な		VIIa	'	タ解析. 予防的投与・治療的投
	らびにその予				与のいずれにおいても死亡率
	防のための			む)	を改善しなかったが {予防投
	rFVIIa 投与の				与:RR 1.04(95 % CI 0.55~
	有効性を見た				1.97, 治療投与: RR 0.91 (95%
	RCTのメタア				CI 0.78~1.06))}, 赤血球製剤の
	ナリシス				投与量は予防的投与で減少し
					た 予防投与: -260.78 (95%
					$ CI - 367.30 \sim -154.27)$ }. 一方,
					血栓塞栓症は rFVIIa の投与で
					増加しなかったが RR 1.18
					$(95\% \text{ CI } 0.94 \sim 1.48), P = 0.15\},$
					動脈血栓塞栓症は rFVIIa 投与
					で増加することが示された
					{RR 1.45 (95% CI 1.02~2.05),
					P = 0.04.

② RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Goldstein,	RCT	緊急的に手術もしく	PCC	plasma	主要評価項目詳細:手術中また
2015		は侵襲的処置を必要			は処置中に評価した止血効果
		とするビタミン K 拮			結果: 手術患者で止血効果が良
		抗薬内服患者			好と評価されたのは 4f-PCC 群
					で88% (65/74), 血漿群で73%
					$(48/66)$ (p=0.0237) \geq 4f-PCC
					群でより有効な止血効果が得
					られた.
					心臓外科手術以外でも 4f-PCC
					群 で 有 意 な PT-INR の 改 善
					(INR≦1.3) を認め{整形外科
					手術:55% vs 13% (P=0.0158),
					その他の手術:54% vs 4%(P
					<0.0001)), 有効な止血効果が
					得られた{整形外科手術:80%
					vs 60% (P=0.27), その他の手
					術:92% vs 74% (P=0.0279)}.
					45 日以内の死亡率 (3% vs 9%)
					や血栓塞栓イベント(7% vs
					8%)において有意差を認めな
					かった.
Shao,		肝硬変患者の手術			赤血球輸血を必要とした患者,
2006	するrFVIIaの		VIIa	76)	n (%) プラセボ:29 (38),
	RCT		kg あたり 50μg		rFVIIa 50μg/kg: 36 (51),
			71 例 100µg		100μg/kg:27μg/kg (36), p
			74 例		= .59
			手術の10分前		赤血球輸血量 (単位), プラセ
			並びに術中2時		ボ:0 (0~10.7), rFVIIa 50μg/
			間ごと手術終了		$kg : 0.9 \ (0 \sim 8.9) \ 100 \mu g/kg : 0$
			まで投与		$(0\sim14), p=0.68$
					FFP 輸血量 (m <i>l</i>), プラセボ:
					0 (0∼2,305), rFVIIa 50μg/kg∶
					$0 \ (0 \sim 3.430) \ 100 \mu g/kg : 0 \ (0)$
					\sim 5,600), p = 0.61
					PC 輸血量 (ml) プラセボ:0
					(0~240), rFVIIa 50μg/kg: 0
					$(0\sim584)$, $100\mu g/kg:0$ $(0\sim)$
					400), p = 0.93
					術中出血量 (ml) プラセボ: 500
					(40~4,700) rFVIIa 50μg/kg:
					800 (50~7,000) rFVIIa 50μg/
					$kg : 500 (70 \sim 6,500), p = 0.77$

③観察研究

Study	Study type	Population	Intervention	Comparator	Outcomes
Colavec-	Retrospective,	肝移植患者	PCC (84.6 % の	propensity	propensity score マッチングを
chia,	single-institu-		患者がフィブリ	score マッチン	行った対照群と比較して
2017	tion study				4f-PCC の投与は輸血量を減少
			も投与された)	PCC 非投与患	させなかった(赤血球製剤, 12.4
			(n = 39)		± 8.0 units vs. 9.7 ± 5.6 units [p]
				フィブリノゲン	$=0.058$]; FFP, 10.0 ± 6.3 vs.
				製剤投与を受け	12.7 ± 9.7 units [p=0.119]).
				た)	

文 献

- 1) Goldstein JN, Refaai MA, Milling TJ Jr, et al: Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet, 385: 2077—2087, 2015.
- 2) Schick KS, Fertmann JM, Jauch KW, et al: Prothrombin complex concentrate in surgical patients: retrospective evaluation of vitamin K antagonist reversal and treatment of severe bleeding. Crit Care, 13: R191, 2009.
- 3) Colavecchia AC, Cohen DA, Harris JE, et al: Impact of intraoperative factor concentrates on blood product transfusions during orthotopic liver transplantation. Transfusion, 57: 3026—3034, 2017.
- 4) Shao YF, Yang JM, Chau GY, et al: Safety and hemostatic effect of recombinant activated factor VII in cirrhotic patients undergoing partial hepatectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Am J Surg, 191: 245—249, 2006
- 5) Gurusamy KS, Pissanou T, Pikhart H, et al: Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane Database Syst Rev, 12: CD009052, 2011.
- 6) Simpson E, Lin Y, Stanworth S, et al: Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev, 3: CD005011, 2012.
- 7) Kozek-Langenecker SA, Ahmed AB, Afshari A, et al: Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol, 34: 332—395, 2017.

CQ4: 大量出血症例において抗線溶療法は推奨されるか?

【外傷】CQ4 大量出血症例において抗線溶療法は推奨されるか?

1) Recommendation

トラネキサム酸は、外傷性出血を伴う成人患者に対して、その重症度に関係なく、可能な限り早期(発症後3時間以内が望ましい)に投与することを弱く推奨する(2B).

2) 推奨文の具体的な解説

大量出血症例では、初期から組織損傷による組織因子/凝固第 VII 因子複合体形成を契機とする消費性凝固障害に加えて、thrombin-thrombomodulin 反応などによる線溶亢進が起こることが指摘されている。そして、大量出血症例に対する抗線溶療法(特に早期からの開始による)の有効性が報告されており、外傷領域では、大規模 RCT により有効性が確認された。ただし、抗線溶療法は、血栓塞栓症や腎障害を来す可能性、トラネキサム酸(Tranexamic Acid: TXA)は投与後痙攣を誘発する可能性も指摘されている。よって、大量出血症例において抗線溶療法は推奨できるかどうかの検討は重要な CQ である。

【死亡率, 28 日 (30 日を含む) 死亡率, 院内死亡率】

RCT ならびにメタ解析においては、国際共同プラセボ対照ランダム化比較試験 (n=20,211) である CRASH-2 study のエビデンスが圧倒的である $^{1/2}$. CRASH-2 試験では、外傷性出血の成人患者に対して、治療群では受傷後 8 時間以内に TXA の短期投与(ローディング 1g/10 分、その後 8 時間かけて 1g 投与)が行われ、全死亡は TXA 投与群で有意に低下している $[1,463\ (14.5\%)\ vs\ 1,613\ (16.0\%)\ ; RR:0.91、95\% CI:0.85~0.97; <math>p=0.0035$]. 特に、出血による死亡を有意に減少させている $[489\ (4.9\%)\ vs\ 574\ (5.7\%)\ ; RR:0.85、95% CI:0.76~0.96; <math>p=0.0077$]. また、入院当日の出血による死亡も有意に低下させている $[282\ (2.8\%)\ vs\ 355\ (3.5\%)\ ; RR:0.80、95% CI:0.68~0.93; <math>p=0.0036$]. 一方、血栓症(vascular occlusion)による死亡、多臓器不全、頭部外傷、または他の原因による死亡率は、プラセボ群と比較して TXA 群で有意差はなかった。

CRASH-2 の substudy³では、出血死に対する TXA の効果が、損傷から治療までの時間に依存することが示された(相互作用 p<0.0001)。早期治療(受傷 1 時間以内)は、出血による死亡リスクを有意に減少させ [TXA 群 198/3,747(5.3%)vs プラセボ群 286/3,704(7.7%);RR 0.68、95% CI:0.57~0.82;p<0.0001]、1~3 時間の治療によっても出血による死亡リスクを減少した [147/3,037(4.8%)vs 184/2,996(6.1%);RR:0.79、95% CI:0.64~0.97;p=0.03]。一方、3 時間以降の投与は、出血による死亡リスクを増加させた [144/3,272(4.4%)vs 103/3,362(3.1%);RR:1.44、95% CI:1.12~1.84;p=0.004)。

他の substudy⁴ でも同様に、死亡率に対する TXA の効果は、受傷当日の死亡率に対して(全死亡:HR = 0.83、95% $CI: 0.73 \sim 0.93$)で最大であり、受傷から 3 時間以内に治療が開始された患者においてのみ明らか

であった. (≤3 時間: HR = 0.78, 95% CI: 0.68~0.90; HR>3 時間=1.02, 95% CI: 0.76~1.36). 受傷から 3 時間以内の TXA 投与開始は、受傷日の出血による死亡の危険性を 28%低下させたと報告されている (HR = 0.72, 95% CI: 0.60~0.86). したがって、TXA は、外傷出血患者に対して可能な限り早期に投与することが推奨される.

また、別の substudy 5 では、3 時間以内に治療を開始した患者における来院時の死亡リスクを4群(<6%、6~20%、21~50%、>50%)に分けて検討している。外傷性出血患者の全死因死亡率および出血死亡率を減少させる TXA の効果は、患者死亡リスクによって大きく変化せず、各群で約 30%の出血による死亡率を減少させ、血栓症発生率を約 30%低下させたと報告している。よって、TXA は外傷性出血を伴う患者に広く安全に投与することができ、その使用は最も重篤な出血を有する患者に限定すべきではないと報告された。

頭部外傷に対する TXA の効果を見た RCT 6)では (n=240), TXA 投与群での全死亡の相対リスク比 (RR)は 0.69 (95% CI : $0.35\sim1.39$)で有意差はなかったと報告されているが,CHARH-2 の頭部外傷患者群 (n=270) を合わせたメタ解析 2)では,TXA 投与が全死亡を減少させたことが報告されている [RR:0.63,95% CI : $0.40\sim0.99,~p=0.05$].

非直接性が問題となるものの、戦場における傷病者(戦傷受傷後 24 時間以内に 1 単位以上の赤血球輸血を受けた患者)を対象とした観察研究において、TXA(1g 静脈内投与後、医師の判断で適宜追加投与)の有効性が MATTERs II®研究で検討された。その結果、全患者において、重症度(Injury Severity Score)は TXA 群で有意に高いにもかかわらず [TXA 群 25.2 \pm 16.6(standard deviation:SD)vs 非 TXA 群(22.5 \pm 18.5SD)、p<0.01]、粗院内死亡率は TXA 群で優位に低く [TXA 投与群(17.4%)vs 非投与群(23.9%)、p=0.03]、特に大量輸血群においては TXA 群で死亡率が半減していた [TXA 群(14.4%)vs 非 TXA 群(28.1%)、p=0.004]。また、全患者群ならびに大量輸血群の生存期間を延長し、30 日間生存に独立して寄与していた(それぞれ p=0.006、p=0.004)。さらに、生存曲線は、出血死が主因となる入院後 48 時間までの死亡に有意差はなく、それ以降の生存に TXA 投与が寄与しており、TXA の抗炎症作用による可能性が高いとの考察がなされていた。

【輸血必要量】

RCT である CRASH- 2^{10} での検討では、プラセボ群 5.160 人(51.3%)、TXA 群 5.067 人(50.4%)に対して輸血がなされた。TXA 群に平均 6.06 単位(SD 9.98)、プラセボ群には平均 6.29 単位(SD 10.31)の輸血が行われていた。頭部外傷に対する TXA の効果を見た RCT 60 では(n=240)、TXA に割り付けられた患者における輸血必要性は、プラセボと比較して相対リスク 0.92(95% CI: $0.61\sim1.40$)であり、いずれも輸血量および必要性への有意な効果は認められていない。

観察研究である先進国における高度外傷センターの研究[®]において,TXA 投与群では,救急部でより多くの輸液が,手術ではより多くの RCC,FFP が投与され,最初の 24 時間以内の RCC 輸血量が多かったと報告されている。MATTERs 研究[®]では,全患者において輸血の必要性は TXA 投与群では非投与群に比べて高かったが,両群間で RCC:FFP に差はなかった(1:0.87,1:0.88)。大量輸血群では,クリオプレシピテート投与が TXA 投与群では非投与群に比べて多かったが,それ以外は輸血量に差はなかった。両群間で RCC:FFP に差はなかった(1:0.88,1:0.87)。

これらの結果から、TXAによる輸血必要量減少効果を明らかにすることはできないものと考えられる. 【血栓塞栓症】

CRASH-2¹⁾では、TXA群での1つ以上の致死的または非致死的血栓症(心筋梗塞、脳卒中、肺塞栓症(PTE)、深部静脈血栓症(DVT))を合併した患者は168人(1.7%)であり、プラセボ投与群[201(2.0%)]と有意差はなかった。受傷後3時間以内に治療を開始した患者を対象としたCRASH-2のsubstudy⁵⁾で、来院時の死亡リスクを4群(<6%、6~20%、21~50%、>50%)に分けて検討した研究では、TXA治療群において、致死的および非致死的な血栓症[OR:0.69、95% CI:0.53~0.89;p=0.005]および動脈血栓症[OR:0.58、95% CI:0.40~0.83;p=0.003]の有意な減少が認められた。一方、TXAによる静脈血栓症のリスクの有意な低下はなかったことより[RR:0.83、95% CI:0.59~1.17;p=0.295]、TXA は動脈血栓症の危険性を低減すると推定された。頭部外傷に対する TXA の効果を見た RCT⁶⁾では(n=240)、TXA 投与群における血栓症の発症はなかったと報告されている。

観察研究である MATTERs 研究において 7 , 全患者群で、肺塞栓症(PTE)[8 (2.7%) vs 2 (0.3%); p = 0.001] および深部静脈血栓症(DVT)[7 (2.4%) vs 1 (0.2%); p = 0.001] は、TXA 投与群において非投与

群と比較して有意に高率に発症していた。大量輸血群に限定しても,TXA 投与群において PTE 発症割合が高かった $[4(3.2\%)\ vs\ 0:\ p=0.01]$. しかしながら,どの患者群においても PTE に起因する死亡例は認められていない。また,全患者群または大量輸血群のいずれにおいても,多変量解析によって TXA 投与を含むいずれの臨床パラメータも DVT または PTE のリスク因子とならなかったことから,TXA 投与は DVT ならびに PTE 発症と関連していない可能性があると報告された.

【在院期間等】

観察研究である先進国における高度外傷センターの研究⁹では、TXA 投与群、非投与群で在院期間に相違ないと報告されている。

【止血成功率】

頭部外傷患者に対する RCT^6 では、進行性頭蓋内出血は TXA 群 21 人 (18%) およびプラセボ群 32 人 (27%) に認められ、統計的な有意差は認められなかった [RR: 0.65, 95% CI: $0.40\sim1.05$].

【神経学的合併症】

頭部外傷患者に対する RCT^6 では、退院時における Glasgow Outcome Scale で重篤な状態(死亡、植物状態、もしくは身体的・精神的障害のため日常生活に介助を要する)と判定された患者の割合は、TXA 投与群とプラセボ群の間で有意差は認められなかった $[RR:0.76,95\%\ CI:0.46\sim1.27]$.

3) Practice points

大規模 RCT である CRASH-2 研究は、inclusion criteria が臨床的に明確でなく、出血性ショック患者は約4割、外科的止血処理を要した患者は約半数、輸血を要した患者も約半数と、大量出血患者以外も多く含まれている。患者選択に「TXA が有効であることが明確でない患者」が含まれるため、主治医のバイアスが入る可能性がある。また、登録患者のほとんどが、先進国と異なる医療環境を持つ発展途上国からであった。よって、先進国に当てはめる外的妥当性の問題点が指摘され、特に先進国における高度外傷センターに対する外的妥当性について、いくつか観察研究がなされている。

先進国の高度外傷センターの研究では、TXA 投与が死亡率を逆に増加させる、特に 2,000ml 以上の赤血球輸血を受ける、受傷後に手術を受ける重症な患者では、死亡率を増加させる可能性が指摘されている 9 . また、rapid thrombelastography(r-TEG)における LY-30 が 3%以上と定義される線溶亢進患者に限った解析において、TXA 投与後にも線溶亢進は有意に改善せず、院内死亡率も改善させなかったとも報告されている 10 . 一方、TXA は、ショックでない患者でのアウトカムには影響を与えないものの、ショックを呈した患者では、MOF の改善(OR = 0.27、95% CI : 0.10~0.73、P = 0.01)、全死亡の改善(OR : 0.16、95% CI : 0.03~0.86;P = 0.03)に寄与したとの相反する報告もなされている 11 . よって CRASH-2 の日本を含む先進国における高度外傷センターに対する外的妥当性について、これらの観察研究から結論付けることは困難と思われた。これらの問題点も考慮し、実際の臨床での応用を検討する必要があると考えられる.

4) Summary of evidence

① meta-analysis

Study	Study type	Population	Intervention	Comparator	Outcomes
Ker,	meta-analysis	-	抗線溶薬	プラセボ	全体をプールした結果、抗線溶
2015	life on arrary 515	抗線溶薬 (aprotinin,	70/441 <u>H</u> 5/4	, , - ,	薬は全死亡を10%減少させた.
		tranexamic acid			(RR 0.90, 95% CI 0.85 to 0.96;
		(TXA), epsilon-			P=0.002). この結果は主に
		aminocaproic acid			TXA に対する CRASH-2 (全体
		and aminomethyl-			の99%を占める)の結果に依存
		benzoic acid) に対す			している. 抗線溶薬が, 血栓塞
		る RCT を対象			栓症の発症,手術や輸血が必要
		3つの試験がinclu-			であった症例の割合について,
		sion criteria に合致し			影響を与えてはいなかった.
		た. 2つは TXA に対			頭部外傷に対する TXA の効果
		して[文献(1) と			を 見 た RCT (n=240) と,
		(6)], 1つがaprotinin			CHARH-2 で頭部外傷を受けた
		に対して実施された.			患者群 (n=270) を合わせたメ
					タ解析では、TXA 投与が全死
					亡を減少させた [RR:0.63,
					$95\% \text{ CI} : 0.40 \sim 0.99, p = 0.05$].
					また、TXAは、頭蓋内出血の
					増加を有意に減少させた(RR
					0.75 ; 95% CI 0.58 to 0.98 ; P =
					0.03).

② RCT

2 RC.	ı		T	~	
Study	Study type	Population	Intervention	Comparator	Outcomes
Shakur,		外傷性出血もしくは			全死亡は、TXA 投与群で有意
2010	placebo-con-	そのリスクのある成	acid	(0.9% saline)	に低下している [1,463 (14.5%)
	trolled trial	人患者(受傷後8時間	(ローディング		vs 1,613 (16.0%); RR: 0.91,
		以内)	lg 10分かけ		95% CI: $0.85 \sim 0.97$; p = 0.0035].
	(11 20,211)		て, その後8時		特に、出血による死亡を有意に
			間かけて1g投		減少させている [489 (4.9%)
			_		
			与)		vs 574 (5.7%); RR: 0.85, 95%
					CI: $0.76 \sim 0.96$; p = 0.0077]. \sharp
					た,入院当日の出血による死亡
					も有意に低下させている [282
					(2.8%) vs 355 (3.5%); RR:
					$ 0.80, 95\% \text{ CI} : 0.68 \sim 0.93 ; p = $
					0.0036]. 一方, 血栓症 (vascular
					occlusion)による死亡,多臓器
					不全, 頭部外傷, または他の原
					因による死亡率は、プラセボ群
					と比較して TXA 群で有意差は
					なかった.
					プラセボ群の 5,160 人(51.3%)
					に対して、TXA 群の 5,067 人
					(50.4%) に対して血液製剤の輸
					血がなされた. TXA 群には,
					平均 6.06 単位 (SD 9.98) プラ
					セボには、平均 6.29 単位 (SD
					10.31) 輸血された.
					TXA 群での1つ以上の致命的
					または非致死的血栓症(心筋梗
					塞, 脳卒中, 肺塞栓症, 深部静
					脈血栓症を合併した患者は 168
					人(1.7%)で,プラセボ投与群
					では 201 (2.0%) で有意差はな
					かった.
Yutthakas-	traumatic	16歳以上の外傷によ	TXA (ローディ	Placebo (sterile	主要評価項目である, 頭蓋内出
emsunt,		る重症脳損傷(post-			血の25%以上の増大は、TXA
2013		resuscitation Glasgow			群では、21 (18%)、プラセボ
2010		Coma Scale 4 to 12)			群では、32 (27%) と、有意差
	V) KO1	もしくは, 重症脳損傷			はなかった. [RR=0.65 (95%]
					· ·
		を伴う多発外傷患者			CI 0.40 to 1.05)]. TXA 投与群
		で,外傷後8時間以内			での全死亡の相対リスク比
		K computerized			(RR) は 0.69, 95% CI: 0.35~
		tomography (CT) を			1.39 で有意差はなかった.
		取れた患者で, 緊急手			Glasgow Outcome Scaleの有害
		術が必要でない患者			事象のTXAによる増減は
		(凝固障害が存在する			[RR: 0.76, 95% CI: 0.46~1.27]
		患者は除外)			認められなかった.
		15 (A) (1)			TXAに割り付けられた患者に
					おける輸血必要性は、プラセボ
					と比較して相対リスクRR:
					0.92 (95 % CI: 0.61~1.40) で
					あった.
					TXA に割り付けられた患者に
					おける血栓症の発症はなかっ
					た.
	L	l	I.		1

③観察研究

C+v.d-v		Donulation	Intervention	Comparator	Outcomes
Study	Study type	Population		_	Outcomes
Morrison,		戦場における傷病者	TXA 投与群	TXA 非投与群	全患者において, 重症度(Injury
2012	き観察研究	(戦傷受傷後24時間			Severity Score) は [TXA 群
	(MATTERs	以内に1単位以上の			25.2 ± 16.6 (SD) vs 非 TXA 群
	研究)	赤血球輸血を受けた			$(22.5 \pm 18.5SD), p < 0.01$
		患者)でTXA (1g静			TXA群で有意に高いにもかか
		脈内投与後, 医師の判			わらず、粗院内死亡率は [TXA
		断で適宜追加投与)の			投与群 (17.4%) vs 非投与群
		有効性を検討(n=			(23.9%), p=0.03] と TXA 群
					_
		896)			で優位に低く、特に大量輸血群
		大量輸血[(24時間以			においては [TXA 群 (14.4%)
		内に 10 単位以上の赤			vs非TXA群(28.1%), p=0.004]
		血球輸血) 患者は, 別			と TXA 群で死亡率が半減して
		途解析がなされた.			いた. また, 全患者群ならびに
					大量輸血群における Kaplan-
					Meier 生存曲線(30日間)で
					は、いずれにおいても TXA は
					独立して生存に寄与していた
					$(2\pi^2 + 10\pi^2) = 0.006, p = 0.004).$
					さらに, 生存曲線は, 出血死が
					主因となる入院後48時間まで
					の死亡に有意差はなく、それ以
					降の生存に TXA 投与が寄与し
					ていた.
					全患者において輸血の必要性
					はトラネキサム酸投与群で高
					かったが,両群間でRCC:FFP
					に差はなかった(1:0.87 and
					1:0.88, respectively). 大量輸
					血群では、クリオプレシピテー
					ト投与がトラネキサム酸投与
					群で多い以外、輸血量に差はな
					かった. 両群間でRCC:FFP
					に差はなかった(1:0.88 and
					1:0.87, respectively).
					全患者群で、肺塞栓症(PTE)
					[8 (2.7 %) 対 2 (0.3 %), p=
					0.001] および深部静脈血栓症
					(DVT) [7 (2.4%) 対1 (0.2%),
					p=0.001] と, TXA 投与群は,
					TXA 非投与群と比較して発症
					率が高かった. 大量輸血群にお
					いても、TXA投与群がTXA非
					投与群と比較して、PTEの割合
					が高かった (4 (3.2%) 対 0, p
					= 0.01).
					いずれの患者群においても
					PTEに起因する死亡例はな
					かった. 異なる解析では, 臨床
					パラメータのどれも,全体また
					は大量輸血群のいずれにおい
					てもDVTまたはPTEとの関連
					がなかった。したがって、TXA
					の投与を含むいずれのパラ
					メータも、DVT または PTE と
					関連していない可能性もある.

単施設後ろ向|戦場における傷病者|MATTERs II 研究では,MAT-ISS (Injury Severity 2013 き観察研究 (戦傷受傷後24時間|TERs研究において,トラネキサ|は,トラネキサム酸群(mean (MATTERs 以内に1単位以上の ム酸群において有意にクリオプ [SD], 23.0 [19.2]), 両方投与 赤血球輸血を受けた|レシピテート投与量が多かった|し な い 群(mean [SD], 21.2 II 研究) 患者) で TXA (1g 静 ことから、トラネキサム酸投与 [18.5]) と比較して、クリオ投 |脈内投与後, 医師の判|に対するクリオプレシピテート|与群 (mean [SD], 28.3 [15.7]), |断で適宜追加投与)の|の影響を見るために,クリオプ|両方投与群(mean [SD],26 有効性を検討 レシピテート (n=168), トラネ[14.9]) で、有意に高かった (P キサム酸 (n=148), クリオプレ < .001). 赤血球輸血量が多く, シピテート+トラネキサム酸 (n ISS が高いにもかかわらず, 死 =258), 投与なし (n=758) の4|亡率は,両方投与群(11.6%) 群において propensity score を で一番低く,トラネキサム酸群 用いて調整された多変量解析が (18.2%) で、クリオ投与群 (21.4%), 両方投与しない群 なされた. (23.6%) であった. トラネキサ ム酸およびクリオプレシピ テートは、同様に独立して死亡 率減少に寄与していた. (オッ ズ比 0.61;95% CI 0.42~0.89; P=0.01 およびオッズ比 0.61; 95% CI $0.40 \sim 0.94$; P = 0.02). また, 両方投与では, 相乗効果 を示した [0.34 (95% CI, 0.20 ~0.58; P<.001)]. クリオの投 与がトラネキサム酸の持つ抗 炎症作用を相乗的に増幅する ことで、30日死亡までの数日か ら数週間までの生存に寄与す るものと推定された.

文 献

- 1) Crash-trial collaborators: Shakur H, Roberts I, Bautista R, et al: Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet, 376: 23—32, 2010.
- 2) Ker K, Roberts I, Shakur H, et al: Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev, CD004896,
- 3) Roberts I, Shakur H, Afolabi A, et al: The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet, 377: 1096—1101, 1101, e1—2, 2011.
- 4) Roberts I, Prieto-Merino D, Manno D: Mechanism of action of tranexamic acid in bleeding trauma patients: an exploratory analysis of data from the CRASH-2 trial. Crit Care, 18: 685, 2014.
- 5) Roberts I, Perel P, Prieto-Merino D, et al: Effect of tranexamic acid on mortality in patients with traumatic bleeding: prespecified analysis of data from randomised controlled trial. BMJ, 345: e5839, 2012.
- 6) Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, et al: Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Med, 13: 20, 2013.
- 7) Morrison JJ, Dubose JJ, Rasmussen TE, et al: Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg, 147: 113—119, 2012.
- 8) Morrison JJ, Ross JD, Dubose JJ, et al: Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg, 148: 218—225, 2013.
- 9) Valle EJ, Allen CJ, Van Haren RM, et al: Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg, 76: 1373—1378. 2014.
- 10) Harvin JA, Peirce CA, Mims MM, et al: The impact of transamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg, 78: 905—909, discussion 9—11, 2015.

11) Cole E, Davenport R, Willett K, et al: Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg, 261: 390—394, 2015.

【心臓血管外科】CQ4 大量出血症例において抗線溶療法は推奨されるか?

1) Recommendation

心臓血管外科手術における大量出血症例では、輸血量の減少目的で、早期からの開始によるトラネキサム酸 (TXA) の投与を弱く推奨する. 死亡率は増加させない. ただし高用量の使用は痙攣の発生が増えるため注意 が必要である (2C).

2) 推奨文の具体的な解説

大量出血症例では、初期から組織損傷による組織因子/凝固第 VII 因子複合体形成を契機とする消費性凝固障害に加えて、thrombin-thrombomodulin 反応などによる線溶亢進が起こることが指摘されている。よって、大量出血症例に対する抗線溶療法(特に早期からの開始による)の有効性が報告されており、心臓外科では、大規模 RCT により、冠動脈バイパス手術において、TXA が出血量を減少させる有効性が確認された¹⁾。ただし TXA は、高用量投与後痙攣を誘発する可能性も指摘されている¹⁾。また種々のメタ解析でも心臓外科手術において TXA の投与は出血量、または輸血量の減少に有効 2 2 $^{-4}$ 2 と報告されている。また TXA の投与は死亡率を増加させないとの報告が多い $^{1/3}$ 1.

その他の抗線溶療法(アプロチニン)について TXA 投与との RCT があり,アプロチニンの使用は心原性死亡率を上げるという報告 $^{\circ}$ がある一方で,メタ解析では死亡率は変わらないという報告 $^{\circ}$ もあり,安全性に関する見解は一定ではない.本邦では上記 RCT の報告を受けて 2007 年以降使用できない状況となっている.またアミノカプロン酸については,本邦で合成され,これからさらに強力な止血作用を有する TXA が本邦で合成された経緯もあり,様々な合剤に含有されているが,単独での止血剤としての静脈注射剤は TXA にとって代わられ,2005 年に発売中止となった.したがって他のガイドライン $^{\circ}$ に示されているような, TXA 以外の二剤についての推奨は本ガイドラインでは行わないこととした.

一方,心筋梗塞,脳梗塞,静脈血栓等の血栓塞栓症の発生については TXA の投与によりいずれも増加させないという RCT¹⁾、メタ解析®がある。痙攣の発症については、dose-related であると思われているが、RCT¹⁾で、試験期間中に痙攣の発生のために、投与量を 100mg/kg から 50mg/kg に減量しても発生率は変わらなかったとの報告がある。また投与量が 24mg/kg でも非投与群に比して、痙攣の発生率は高いとの報告®もある。この二つの報告でも、TXA の投与は死亡率に影響はしないが、痙攣の発生は死亡率を増加させると報告しており、TXA の投与時の痙攣の発生には注意が必要である。大量出血症例において抗線溶療法を推奨できるかどうかの検討は、血液製剤に代わり得る治療としても重要であるが、TXA による痙攣、アプロチニンによる死亡率の増加等、重大な副作用もあり、注意が必要である。

他のガイドラインにおける推奨:

EACTS/EACTA guideline では、大量輸血が予想される患者に対して TXA 及びアプロチニンは出血量を減少させることが報告されているが、 TXA では痙攣の発生が報告され、アプロチニンでは死亡例が増加したことが報告されており 7 、さらなる研究が必要と述べるにとどまっている.

3) Practice points

現状での痙攣の合併症を考慮すると、抗線溶療法(TXA)の対象群として、出血性合併症のハイリスク患者(大動脈手術、再手術、術前抗血小板剤投与例等)に対して、投与を検討すべきと考えられる。低用量投与(10mg を手術開始時に緩徐に静注し、その後 1mg/kg で持続静注)と高用量投与(30mg を手術開始時に緩徐に静注し、その後 16mg/kg で持続静注)の比較では高用量投与群の方が輸血量が少なく、痙攣の発生率には差がなかった(1.1% vs 1.8%)との報告¹⁰があるが、前述のように 24mg 単回投与でも痙攣の発生は非投与群に比し高いため、使用に際しては、低用量投与を行うべきと考えられる。TXA は腎排泄であり、腎機能障害患者については、経口剤での痙攣の報告もあり、投与量の減量が必要と考えられる。これらも考慮し、慎重に投与を行うべきと思われる。

4) Summary of evidence

① meta-analysis

Study	Study type	Population	Intervention	Comparator	Outcomes
Edwards,	meta-analysis	10,488 人の心臓外科	Tranexamic	No Tranexamic	TXA の投与は輸血のリスクを
2012		手術患者	acid	acid	減少させ(0.63, 0.59 to 0.68;
					P<0.001), 心筋梗塞 (0.68, 0.43)
					to 1.09; P=0.11), 脳梗塞(1.14,
					0.65 to 2.00; P=0.65), 深部静
					脈血栓(0.86, 0.53 to 1.39; P =
					0.54, 肺塞栓 (0.61, 0.25 to 1.47;
					P=0.27)のリスクは上昇させな
					V1.
David,	meta-analysis		Aprotinin	No fibrinolytic	いずれも死亡率には有意差な
2011		手術患者	Tranexamic	_	く, 出血量を減少させる. いず
			acid Epsilon		れも stroke, MI, PE, DVTの
			aminocaproic		リスクにならない.
			acid		701
Levi,	meta-analysis	8,409 人の心臓外科手	Aprotinin	placebo	placebo 群と比較して, Apro-
1999		術患者			tinin投与群は死亡率が低いOR
					0.55 [95% CI 0.34~0.90], また
					輸血量は Aprotinin 投与群で少
					ない.
Howell,	meta-analysis	15,528人の心臓外科	_	placebo	死亡率について、Aprotinin vs
2013		手術患者	Tranexamic		TXA (OR, 0.73; 95% CI, 0.45
			acid, Epsilone		~1.21) Aprotinin vs placebo
			aminocaproic		(OR, 1.11; 95% CI, 0.75~1.53)
			acid		で、Aprotinin 使用が死亡率を
					高めるという結論には至らず.

② RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Fergusson,	RCT	心臟外科再手術, 僧帽	Aprotinin,	3 群間の比較	Aprotinin 投与は心源性死亡の
2008		弁置換術, 弁及びバイ	Tranexamic		リスクを上昇させる (RR,
		パスの複合手術, 二弁	acid, and Ami-		2.19;95% CI, 1.25 to 3.84) 塞
		置換, 上行及び弓部大	nocaproic acid.		栓症発生のリスクは同等. 大量
		動脈手術患者.			出血のリスクは Aprotinin 投与
					で減少する.
Myles,	RCT	CABG 患者	Tranexamc	placebo	TXA 投与により、死亡あるい
2017			axid		は塞栓症発生のリスクはあげ
					ない (RR, 0.92;95 % [CI,
					0.81 to 1.05; P=0.22) 輸血量は
					減少させることができ, 出血に
					よる再開胸手術も減少させる.
					術後痙攣はTXA投与群で
					0.7%, 非投与群で0.1%発生
					RR, 7.60; 95% CI, 1.80 to
					68.70; $P = 0.002$ by Fisher's
					exact test).

Sigaut,	RCT	人工心肺使用心臓外	Tranexamic	低容量:10mg/	輸血が必要であったか否かに
2014		科手術患者	acid	kgのボーラス	差はないが、輸血量、出血量は
				投与に続き,	高容量投与群で少なかった. 痙
				1mg/kg/h 持続	攣の発生は低容量群で少な
				投与	かった(低容量群 1.1%, 高容
				高容量:30mg/	量群 1.8%).
				kgのボーラス	
				投与に続き,	
				16mg/kg/h 持	
				続投与	

③観察研究

0. 1	0. 1 .	D 1.2	т	0	0 .
Study	Study type	Population	Intervention	Comparator	Outcomes
Koster,	単施設	CPB 使用患者	大量出血のハイ	Tranexamic	痙攣の発生は TXA 投与群で多
2013	後ろ向き観察		リスク(抗血小	acid 非投与群	かった OR 2.10(95% CI:1.29
	研究		板療法使用, 再		$\sim 3.41 \; ; \; P = 0.003).$
			手術, complex		
			procedure に対		
			して中等量		
			(24mg/kg) O		
			Tranexamic		
			acid 投与		

文 献

- 1) Myles PS, Smith JA, Forbes A, et al: Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery. New Engl J Med, 376: 136—148, 2017.
- 2) Henry DA, Carless PA, Moxey AJ, et al: Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev, CD001886, 2011.
- 3) Perel P, Ker K, Morales Uribe CH, et al: Tranexamic acid for reducing mortality in emergency and urgent surgery. Cochrane Database Syst Rev, CD010245, 2013.
- 4) Ausset S, Glassberg E, Nadler R, et al: Tranexamic acid as part of remote damage-control resuscitation in the prehospital setting: A critical appraisal of the medical literature and available alternatives. J Trauma Acute Care Surg, 78: S70—S75, 2015.
- 5) Fergusson DA, Hébert PC, Mazer CD, et al: A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. New Engl J Med, 358: 2319—2331, 2008.
- 6) Howell N, Senanayake E, Freemantle N, et al: Putting the record straight on aprotinin as safe and effective: results from a mixed treatment meta-analysis of trials of aprotinin. J Thorac Cardiovasc Surg, 145: 234—240, 2013.
- 7) The Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA) 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. Eur J Cardiothorac Surg. 53: 79-111, 2018.
- 8) Ker K, Edwards P, Perel P, et al: Effect of tranexamic acid on surgical bleeding: systematic review and cumulative metaanalysis. BMJ, 344: e3054, 2012.
- 9) Koster A, Börgermann J, Zittermann A, Lueth JU, et al: Moderate dosage of tranexamic acid during cardiac surgery with cardiopulmonary bypass and convulsive seizures: incidence and clinical outcome. Br J Anaesth, 110: 34—40, 2013.
- 10) Sigaut S, Tremey B, Ouattara A, et al: Comparison of two doses of tranexamic acid in adults undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology, 120: 590—600, 2014.

【産科】CQ4 大量出血症例において抗線溶療法は推奨されるか?

1) Recommendation

妊産褥婦の大量出血症例に対して、出産後3時間以内のできる限り早期からのトラネキサム酸(TXA)投与を提案する(2B).

2) 推奨文の具体的な解説

大量出血症例では、初期から組織損傷による組織因子/凝固第 VII 因子複合体形成を契機とする消費性凝固障害に加えて、thrombin-thrombomodulin 反応などによる線溶亢進が起こることが指摘され、抗線溶療法の有効性が WHO のガイドラインで指摘されていた.

産科領域における大量出血への抗線溶療法のエビデンスは、20,021 例という多数例を対象とした RCT で評価した WOMAN study¹⁾の結果に大きく依存している。この研究での TXA の投与方法は、1g(10mg/ml/分)を 100分かけてゆっくり静脈投与し、止血できない場合にはさらに TXA1g を追加投与するものであった。 WOMAN study によれば、TXA の投与は出血による妊産婦死亡を減少した(オッズ比 0.81, p=0.045)。しかし、出産後 3 時間以降の投与では有意差を認めず、出産後 3 時間以内の TXA の投与のみ死亡率を減少した(オッズ比 0.69, p=0.008)。その他の関連する妊産婦死亡に関しては有意差を認めず、子宮全摘術を減少させることもなかった(p=0.84)が、TXA 投与群の方が、止血目的の開腹術が行われる頻度が減少した(オッズ比 0.64, p=0.002)。 TXA 投与により予想された血栓症などの有害事象は、プラセボ群と比較して有意に増加しなかった。

WOMAN study 以外の研究では、出血量についてはメタアナリシス 2 編があった。Peitsidis らの報告では、RCT の結果を合わせた出血量減少の推定値は 32.5ml で有意では無かった(95% CI $-4.1\sim69.13$)².Novikova らの報告では、 $400\sim500ml$ の出血および 1,000ml 以上の出血例全てにおいて、TXA を使用した群で出血量が少なかったとされるが、1,000ml 以上の出血は帝王切開では減少したものの経腟分娩例では有意な減少は認めなかったとされている³.他の 9 編の RCT でも TXA の使用は出血量を減少させたと報告されている $^{40\sim12}$.

しかし、20,021 例の実際登録された患者の大半が先進国と異なる医療環境を持つ発展途上国であり、しかも 妊産婦死亡は483名と非常に多く、我が国での医療事情に当てはめることへの妥当性が問題となる可能性があ るため、産科領域のアンサーとしては「強く推奨する」ではなく「提案(弱く推奨)する」としたが、RCT による根拠があるために2Bとした。今後の大量出血症例において抗線溶療法は推奨できるかどうかの妥当性 を検証するための先進国を含めた再度の大規模RCTの実施は困難であるため、WOMAN study に大きく依存 した提案にならざるを得なかった。

産科領域における大規模RCTにより、その安全性が確認されたが、抗線溶療法は、血栓塞栓症や腎障害を来す可能性、TXAは投与後心血管領域では痙攣を誘発する可能性も指摘されているので、実施に当たってはこの点について十分に留意しなければならない。

3) Practice points

2017年1月に公表された「産科危機的出血への対応指針2017」(日本産科婦人科学会、日本産婦人科医会、日本周産期・新生児医学会、日本麻酔科学会、日本輸血・細胞治療学会の5団体による共同作成)にも、「ショックインデックス1.0となれば、産科DICでは線溶が初期より亢進することが多いのでTXA2~4gを予防投与する」と記載されており、我が国における実地臨床と本提案との齟齬はない。

投与方法としては、産科領域でも急速・大量投与で痙攣の合併症があるため、WOMAN study の 1g (10mg/ml/分) のゆっくりとした投与、さらに出血持続していれば再度 1g を追加投与することに留意する.

4) Summary of evidence

(1) RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
WOMAN	TXA Ø 20,000	20,000 例に症例数を	通常の治療に加	通常の治療に加	出血による死亡のリスクは,
Trial	症例に対する,	増やして検証を行っ	えて、TXAlgの	えて、プラセボ	TXA 投与群で有意に減少して
Collabora-	多施設,多国籍,	た.	静脈内注射	(NaCl 0.9%) の	いた (p=0.045). 肺塞栓症や臓
tors,	double blind	ランダム化した後, 結	(dose 1). 30分	静脈内注射	器不全, 敗血症, 子癇発作など
2017	RCT. 産後出	果は42日後(6週間	以上出血が続い	(dose 1). 30 分	の死亡に関しては, 有意差を認
	血に対する死	後) に集められた. 有	ていた場合もし	以上出血が続い	めなかった. 分娩後3時間以内
	亡や子宮摘	害事象も 42 日までに	くは, 一度止血	ていた場合もし	の TXA 投与群において,投与
	出、それに関				群では出血による死亡のリス
	連した合併症	Primary outcomes	投与から24時	したものの初期	クを減少させた(89 [1・2%]
					women died in TXA group vs
					$127 [1 \cdot 7\%]$ in the placebo
					group, RR 0 · 69, 95% CI 0.52
	作為抽出,二	た.	与 (dose 2)	ラセボを追加投	~0.91;p=0.008). 分娩後3時
	重盲検、プラ			与 (dose 2)	間以上の TXA の投与は,有意
	セボ対照試験				差がなかった (66 [2.6%] TXA
					group vs 63 [2.5%] placebo
					group, RR 1.07, 95% CI 0.76~
					1.51 ; p = 0.70.
					止血目的の開腹術は、209名.
					その内 114 名(55%)が c/s 後,
					95名(45%)が経腟分娩後で
					あった.TXA 投与群の方が,
					止血目的の開腹術を減少させ
					た $(p = 0.002)$.
					2 群間で有意な輸血量の差は認
					めなかった.
					肺塞栓症や深部静脈血栓症, 心
					筋梗塞, 脳梗塞などの血栓イベ
					ントは両群間で有意差は認め
					なかった.

文 献

- WOMAN Trial Collaborators. Effect of early transamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet, 27: 2105—2116, 2017.
- 2) Peitsidis P, Kadir RA: Antifibrinolytic therapy with tranexamic acid in pregnancy and postpartum. Expert Opin Pharmacother, 12: 503—516, 2011.
- 3) Henry DA, Moxey AJ, Carless PA, et al: Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev, CD001886, 2001.
- 4) Sentürk MB, Cakmak Y, Yildiz G, et al: Tranexamic acid for cesarean section: a double-blind, placebo-controlled, randomized clinical trial. Arch Gynecol Obstet, 287: 641—645, 2013.
- 5) Xu J, Gao W, Ju Y: Tranexamic acid for the prevention of postpartum hemorrhage after cesarean section: a double-blind randomization trial. Arch Gynecol Obstet, 287: 463—468, 2013.
- 6) Gungorduk K, Asıcıoğlu O, Yıldırım G, et al: Can intravenous injection of tranexamic acid be used in routine practice with active management of the third stage of labor in vaginal delivery? A randomized controlled study. Am J Perinatol, 30: 407—413, 2013
- 7) Gai MY, Wu LF, Su QF, et al: Clinical observation of blood loss reduced by tranexamic acid during and after caesarian section: a multi-center, randomized trial. Eur J Obstet Gynecol Reprod Biol, 112: 154—157, 2004.

- 8) Movafegh A, Eslamian L, Dorabadi A: Effect of intravenous tranexamic acid administration on blood loss during and after cesarean delivery. Int J Gynaecol Obstet, 115: 224—226, 2011.
- 9) Ahmed MR, Sayed Ahmed WA, Madny EH, et al: Efficacy of tranexamic acid in decreasing blood loss in elective caesarean delivery. J Matern Fetal Neonatal Med, 28: 1014—1018, 2015.
- 10) Mirghafourvand M, Mohammad-Alizadeh S, Abbasalizadeh F, et al: The effect of prophylactic intravenous tranexamic acid on blood loss after vaginal delivery in women at low risk of postpartum haemorrhage: a double-blind randomised controlled trial. Aust N Z J Obstet Gynaecol, 55: 53—58, 2015.
- 11) Abdel-Aleem H, Alhusaini TK, Abdel-Aleem MA, et al: Effectiveness of tranexamic acid on blood loss in patients undergoing elective cesarean section: randomized clinical trial. J Matern Fetal Neonatal Med, 26: 1705—1709, 2013.
- 12) Ducloy-Bouthors AS, Jude B, Duhamel A, et al: High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Crit Care, 15: R117, 2011.

【その他の領域】CQ4 大量出血症例において抗線溶療法は推奨されるか?

1) Recommendation

整形外科や婦人科, 腹部外科手術において, 出血が予想される場合または線溶亢進が存在する大量出血を生じた場合に, 出血量・輸血量の減少を目的とした TXA の予防的または治療的投与を推奨する (2B).

2) 推奨文の具体的な解説

大量出血患者では凝固因子および血小板の喪失・消費のみならず希釈性の凝固障害を生じるが、同時に線溶系の制御も障害を受ける。止血血栓の形成に伴って線溶系も活性化するが、プラスミンの制御因子である $\alpha 2$ プラスミンインヒビター $(\alpha 2\text{-PI})$ はモル比でプラスミノゲンの 50% 程度しか存在せず、線溶系の活性化によって消費性に低下しやすいという特徴を持つ¹²。また $\alpha 2\text{-PI}$ も血液希釈によって低下するため、大量出血患者ではプラスミンの局所制御が脆弱化する。このような病態では凝固因子の補充のみで適切な止血を図ることは難しく、プラスミンを抑制する抗線溶療法が必要となる。しかし、線溶には血栓によって閉塞した血管を再疎通させるという生理的な意義もあるため、過度の線溶抑制によって血栓塞栓症が惹起される可能性がある。そこで「大量出血症例において抗線溶療法は推奨されるか?」を CQ として選択した。

本 CQ においては心臓血管外科・外傷・産科以外の大量出血患者を対象とした。また、介入は術中の TXA 投与とし、プラセボ投与患者または抗線溶療法を行わなかった患者を対照群とした。28日(または 30 日)死亡率、院内死亡率を主要評価項目とし、出血量、輸血必要量、同種血輸血回避率、血栓塞栓症および腎機能障害発生を副次評価項目とした。大量出血症例における抗線溶療法の効果については、外傷・産後出血患者を対象とした大規模な多施設前向き介入試験において TXA の投与が死亡率を改善することが報告されている³¹⁴. しかし、腹部外科や整形外科領域で抗線溶療法の効果を検討した同規模の RCT は存在しない。したがって比較的小規模の RCT、観察研究および RCT のメタ解析から日本で使用可能な TXA についての結果のみを抽出し、評価を行った。

本 CQ の主要評価項目は 28 日(または 30 日)死亡率・院内死亡率だが,RCT によって死亡率評価の時期が異なる。単に死亡率として評価した場合,心臓外科・整形外科・婦人科・外科手術を含む 2 つのメタ解析 (5,6) では,TXA 投与は死亡率を増加させなかった {RR 0.67,(95% CI 0.33~1.34) および RR 0.60,(95% CI 0.33~1.10)}。また,肝移植を対象としたメタ解析でにおいても 60 日死亡率は TXA 投与群で低い傾向にあるが有意差はなかった $\{4.8\%$ vs. 8.8%, RR 0.55; 95% CI 0.17~1.76}。したがって,これらのメタ解析では TXA の投与が死亡率を増加させないことが示された.

肝移植を対象としたメタ解析⁷⁾では出血量・輸血必要量にともに有意差はなかったが{平均出血量差 -4.98l(95% CI $-10.18\sim0.23$),輸血標準化平均差 -0.27(95% CI $-0.59\sim0.06$)},個々のRCT の患者数が少なく,バイアスリスクが高い.Henry らのメタ解析⁶⁾のサブ解析では TXA の投与が整形外科・婦人科手術において出血量を減少させること{平均出血量差 -446.19ml(95% CI $-554.61\sim-337.78$),-243.00ml(95% CI $-460.02\sim-25.98$)}が示されている.また,米国内の股関節または膝関節置換術患者(propensity score マッチング後の n=5,486)を対象とした観察研究においても同種血輸血率を減少させることが示されている(6.0% vs 14.5%,輸血リスク OR 0.47)⁸.またエビデンスの強さは低いが,18 歳以下の側弯症手術のメタ解析においても TXA の投与によって出血量が減少し(平均出血量差 -681.81ml,95% CI $-1149.12\sim-214.49$),輸血量を減少させることが示されている(平均輸血量差 -395.14ml,95% CI $-687.55\sim-102.75$)⁹.

血栓塞栓症については、心筋梗塞(RR 0.68, P=0.11),脳梗塞(RR 1.14, P=0.65),DVT(RR 086, P=0.54),PE(RR 0.61,P=0.27)と血栓性イベントの発生に有意差はなく $^{\circ}$,他のメタ解析でも同様の結果が示されている $^{\circ 7}$. 観察研究 $^{\circ}$ においても DVT 発症率は同等であり PE 合併率は TXA 群で低いことから,TXA の投与によって血栓性イベントは増加しないと考えられる.急性腎機能障害・腎不全についても,メタ解析で RR 0.89(95% CI 0.33~2.37,P=0.87) $^{\circ}$,観察研究でも RR 0.74(95% CI 0.57~0.96,P<0.05)と,TXA 投与で増加しないことが示されている.

3) Practice points

TXA は心臓外科・外傷・産科領域以外の大量出血症例においても、出血量・輸血必要量を減少させるが、すべての病態や術式に適応となる普遍的な投与量は明らかではない。ヨーロッパの周術期大量出血管理ガイドラインにおいては $20\sim25$ mg/kg が参考投与量として提示されているが 10 、卵巣癌手術を対象とした RCT 11 では 15mg/kg でも出血量・輸血必要量減少に効果があると報告されている。 TXA の血中半減期は約 2 時間と比較的短く、そのほとんどが未変化体のまま尿中に排泄されることから、状況に応じて追加ボーラス投与もしくはボーラス投与に続いて持続投与が必要と考えられる。 TXA は血栓塞栓症を増加させないが、心臓外科領域では TXA による術後痙攣が報告されており 12 、腎排泄が遅延する腎機能低下患者では投与量に注意が必要である。トロンボエラストグラフィを用いた in vitro の研究では tPA によって誘導した線溶亢進を完全に抑制するために必要な TXA の最低濃度は新生児で 6.54μg/ml (95%信頼区間 $14.59\sim20.41$) との報告もある 13 。また、心臓手術患者でのデータから作成した薬物動態モデルでは TXA 8mg/kg を 30分間で投与後 4mg/kg/hr の持続投与で 33μg/ml の血中濃度を維持できることが示されている 14 0. しかし、線溶抑制に必要な血中濃度は線溶活性とのバランスで決定するため、上記の投与法はあくまでも参考とすべきである。

4) Summary of evidence

1 meta-analysis

Study type	Population	Intervention	Comparator	Outcomes
外科手術(緊	対象は外科手術(car-	TXA	コントロール	①輸血
急含)におい	diac orthopaedic			Risk 比 0.62(p<0.001)と有意
ての①輸血②	hepatic urological			に輸血リスクを減らす.
血栓塞栓症③	vascular gynaecolog-			②血栓塞栓症
死亡率をアウ	ical cranial and			心筋梗塞: Risk 比 0.68 (P=
トカムとした	orthognathic) で			0.11),脳梗塞:Risk 比 1.14(P
メタアナリシ	TXA vs コントロー			= 0.65), DVT: Risk 比 0.86 (P
ス.	ルのRCT			= 0.54), PE: 0.61 (P=0.27)
				③死亡率
				TXA 群で死亡が少ない (0.61;
				P=0.04) であるが, 適切に秘匿
				化された研究に限るとその効
				果は明らかではない (0.67; P=
				0.25).
	外科手術(緊 急含)にお血② 血栓塞をとしり 死亡スナナシ	外科手術(緊 急含)におい での①輸血② 血栓塞栓症③ 死亡率をアウ トカムとした メタアナリシ 対象は外科手術(car- diac orthopaedic urological pepatic urological vascular gynaecolog- ical cranial and orthognathic) で メタアナリシ TXA vs コントロー	外科手術(緊対象は外科手術(car- 急含)におい での①輸血② hepatic urological 血栓塞栓症③ vascular gynaecolog- 死亡率をアウ トカムとした メタアナリシ TXA vs コントロー	外科手術(緊 対象は外科手術(car- 急含)におい diac orthopaedic ての①輸血② hepatic urological 血栓塞栓症③ vascular gynaecolog- でで変をアウ ical cranial and トカムとした メタアナリシ TXA vs コントロー

Henry,	成人の予定手	外科手術でトランサ	TXA	コントロール	①死亡
2011	術での抗線溶	ミン vs コントロール			TXA は死亡を増やさない(リ
		の RCT. (本論文では			スク比 0.6, 95% CI 0.33~1.10)
		· ·			
		TXA vsアミノカプ			対象 30 トライアルの Heteroge-
	ナリシス	ロン酸, TXA vs アプ			neity は有意差なし (P=0.9).
		ロチニンも行ってい			このうち23トライアルが心臓
		るが, いずれも現在は			血管外科でそちらはサブグ
		日本で使用できない			ループ解析されており、同様に
		ので、TXA vs コント			死亡を増やさず(リスク比 0.58
		ロールに絞り記載)			95% CI 0.26~1.28).
					②全体の出血量
					心 外: -300.47 (-470.74~
					-130.21), 整形: -446.19
					(-554.61~-337.78), 肝移植:
					-6,552.0(-14,329.54~1,225.54),
					婦人科: -243.0 (-460.02~
					-25.98)
					以上まとめて-414.06
					$(-525.19 \sim -302.92)$
					③ RCC 輸血の有無:術式(心
					外,整形,肝移植,血管外科,
					婦人科)のサブグループ解析
					心外: 0.68 (0.57~0.81), 整形:
					, , , , , , , , , , , , , , , , , , , ,
					0.49 (0.39~0.62),肝移植: 0.16
					(0.00~32.47),血管外科:0.56
					(0.33~0.96), 婦人科:1.50 (0.75
					~3.01). リスク比 (95% CI) で
					記載.
C	肛移歯の山血	TY 技电头 TV A N	TVA	プニトボ	
		肝移植患者. TXA 以	TXA	プラセボ	①死亡
	and or 同種血	外にもアプロチニン,	TXA	プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス
	and or 同種血		TXA	プラセボ	①死亡
	and or 同種血 輸血を減らす	外にもアプロチニン,		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス
	and or 同種血 輸血を減らす ための介入の	外にもアプロチニン, アミノカプロン酸,リ コンビナント第 VII		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血
	and or 同種血 輸血を減らす ための介入の 効果を見た	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55(95% CI 0.17~1.76) ②出血 有意差なし(mean difference
	and or 同種血 輸血を減らす ための介入の 効果を見た RCTを対象と	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23)
	and or 同種血 輸血を減らす ための介入の 効果を見た RCTを対象と	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference - 4.98liter, 95 % CI - 10.18~ 0.23) ③同種血輸血
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference - 4.98liter, 95 % CI - 10.18~ 0.23) ③同種血輸血
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11), 以 下同様に有意差なし
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference - 4.98liter, 95 % CI - 10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11), 以 下同様に有意差なし 同種血輸血 (standard mean difference -0.27, 95% CI-0.59
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference - 4.98liter, 95 % CI - 10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種 血 輸血 (standard mean difference - 0.27,95% CI - 0.59~0.06)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference - 4.98liter, 95 % CI - 10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種 血 輸血 (standard mean difference - 0.27,95% CI - 0.59~0.06)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リス ク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean differ-
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種 血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~ 0.11) Cryo (standard mean difference -10.11) Cryo (standard mean difference -10.12,95% CI-0.53~ 0.11) Cryo (standard mean difference -10.13)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種 血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11)
	and or 同種血 輸血を減らす ための介 見 を RCT を対象と したメタアナ	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラセ		プラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~ 0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~ 0.11) Cryo (standard mean difference -10.11) Cryo (standard mean difference -10.12,95% CI-0.53~ 0.11) Cryo (standard mean difference -10.13)
2011	and or man and or man and ma	外にもアプロチニン, アミノカプロン酸, リ コンビナント第 VII 因子製剤を比較. ここ では TXA vs プラ ボについて記載.			①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02)
McNicol	and or or man and or or man and	外にもアプロチニン, アミノカプロン酸,リコンビナント第 VII 因子製剤を比較.ここ では TXA vs プラ ではで記載.	抗線溶薬(アプ	抗線溶薬非投与	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.55~0.02) 主要評価項目詳細:出血量
2011	and or man and or man and ma	外にもアプロチン アミノカプロン第 VII 因子 TXA vs プラ では TXA vs 載. 一	抗線溶薬(アプ ロチニン, TXA	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量 9つの報告が解析対象となり,
McNicol	and or or man and or or man and	外にもアプロチニン, アミノカプロン酸,リコンビナント第 VII 因子製剤を比較.ここ では TXA vs プラ ではで記載.	抗線溶薬(アプロチニン, TXA (TXA), アミノ	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量9つの報告が解析対象となり、TXA に関する報告は2つ.
McNicol	and or or man and or or man and	外にもアプロチン アミノカプロン第 VII 因子 TXA vs プラ では TXA vs 載. 一	抗線溶薬(アプロチニン、TXA (TXA)、アミノカプロン酸の何	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量 9つの報告が解析対象となり、TXAに関する報告は2つ. 平 均 出 血 量 は TXA 群 で
2011 M c N i c o l	and or or man and or or man and	外にもアプロチン アミノカプロン第 VII 因子 TXA vs プラ では TXA vs 載. 一	抗線溶薬(アプロチニン, TXA (TXA), アミノ	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量9つの報告が解析対象となり、TXA に関する報告は2つ.
2011 M c N i c o l	and or or man and or or man and	外にもアプロチン アミノカプロン第 VII 因子 TXA vs プラ では TXA vs 載. 一	抗線溶薬(アプロチニン、TXA (TXA)、アミノカプロン酸の何	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量 9つの報告が解析対象となり、TXAに関する報告は2つ. 平 均 出 血 量 は TXA 群 で
McNicol	and or or man and or or man and	外にもアプロチン アミノカプロン第 VII 因子 TXA vs プラ では TXA vs 載. 一	抗線溶薬 (アプロチニン, TXA), アミノカプロン酸の手術直れか) の手術直	抗線溶薬非投与またはプラセボ	①死亡 60 日死亡 4.8% vs 8.8% リスク比 0.55 (95% CI 0.17~1.76) ②出血 有意差なし (mean difference -4.98liter, 95 % CI-10.18~0.23) ③同種血輸血 RCC 有意差なし (P=0.11),以下同様に有意差なし 同種血輸血 (standard mean difference -0.27,95% CI-0.59~0.06) PC (standard mean difference -0.17,95% CI-0.49~0.16) FFP (standard mean difference -0.21,95% CI-0.53~0.11) Cryo (standard mean difference -0.27,95% CI-0.57~0.02) 主要評価項目詳細:出血量 9つの報告が解析対象となり, TXA に関する報告は2つ.平 均 出血量はTXA群で-681.81ml (95% CI:-1,149.12

② RCT

Study	Study type	Population	Intervention	Comparator	Outcomes
Lundin,	double-blind	進行卵巣がんに対し	麻酔導入後に	プラセボ(生理	主要評価項目詳細:周術期出血
2014	placebo-con-	拡大手術を受ける患	TXA 15mg/kg	食塩水) 投与患	量
	trolled ran-	者	(n = 50)	者 (n=50)	術中・術後の総出血量は TXA
	d o m i z e d				群で減少(520ml vs 730ml, p
	multicenter				= 0.03)
	study				

③観察研究

3 観祭				-	_
Study	Study type	Population	Intervention	Comparator	Outcomes
Poeran,	The state of the s	アメリカにおける		TXA 投与なし	①自己血 or 同種血輸血
2014	研究	TKA or THA を行っ			TXAで輸血リスク有意に低下.
		た患者のデータベー	以下の3群にカ		Logistic regression
		ス (Premier Perspec-	テゴリー化		(i) TXA<1g OR 0.38 (0.35~
		tive database) より	①なし②1,000		0.42)
		87,416名に対して	mg 以下③ 2,000		(ii) TXA2g OR 0.31 (0.28~
		logistic regression お	mg くらい ④		0.34)
		よびPSマッチで解析	3,000mg 以上		(iii) TXA>3g OR 0.31 (0.27~
					0.36)
					PS match
					TXA使用で輸血のOR 0.5 (0.45
					~0.55)
					②同種血輸血のみ
					Logistic regression
					(i) TXA<1g OR 0.37 (0.33~
					0.41)
					(ii) TXA2g OR 0.29 (0.26~
					0.32)
					(iii) TXA>3g OR 0.31 (0.27~
					0.37)
					PS match
					TXA 使用で輸血の OR 0.47
					(0.42~0.53)
					③血栓塞栓症
					Logistic regression
					(i) TXA<1g OR1.02 (0.71~
					1.45)
					(ii) TXA2g OR 0.99 (0.70~
					1.39)
					(iii) TXA>3g OR 0.85 (0.53~
					1.35)
					PS match
					TXA 使用で血栓の OR 0.86
					(0.59~1.25)
					④急性腎不全
					Logistic regression
					(i) TXA<1g OR 0.80 (0.63~
					1.02)
					(ii) TXA2g OR 0.70 (0.55~
					0.88)
					(iii) TXA>3g OR 1.11 (0.84~
					1.45)
					PS match
					TXA 使用で腎不全の OR 0.74
					$(0.57 \sim 0.96)$

文 献

- 1) Aoki N: Discovery of alpha 2-plasmin inhibitor and its congenital deficiency. J Thromb Haemost, 3: 623—631, 2005.
- 2) Okajima K, Kohno I, Soe G, et al: Direct evidence for systemic fibrinogenolysis in patients with acquired alpha 2-plasmin inhibitor deficiency. Am J Hematol, 45: 16—24, 1994.
- 3) CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet, 376: 23—32, 2010.
- 4) WOMAN Trial Collaborators. Effect of early transamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet, 389: 2105—2116, 2017.
- 5) Ker K, Edwards P, Perel P, et al: Effect of tranexamic acid on surgical bleeding: systematic review and cumulative metaanalysis. BMJ, 344: e3054, 2012.
- 6) Henry DA, Carless PA, Moxey AJ: Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev, 3: CD001886, 2011.
- 7) Gurusamy KS, Pissanou T, Pikhart H, et al: Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane Database Syst Rev, 12: CD009052, 2011.
- 8) Poeran J, Rasul R, Suzuki S, et al: Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety. BMJ, 349: g4829, 2014.
- 9) McNicol ED, Tzortzopoulou A, Schumann R, et al: Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev, 9: CD006883, 2016.
- 10) Kozek-Langenecker SA, Ahmed AB, Afshari A, et al: Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol, 34: 332—395, 2017.
- 11) Lundin ES, Johansson T, Zachrisson H, et al: Single-dose tranexamic acid in advanced ovarian cancer surgery reduces blood loss and transfusions: double-blind placebo-controlled randomized multicenter study. Acta Obstet Gynecol Scand, 93: 335—344, 2014.
- 12) Lecker I, Wang DS, Romaschin AD, et al: Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest, 122: 4654—4666, 2012.
- 13) Yee BE, Wissler RN, Zanghi CN, et al: The effective concentration of tranexamic acid for inhibition of fibrinolysis in neonatal plasma in vitro. Anesth Analg, 117: 767—772, 2013.
- 14) Dowd NP, Karski JM, Cheng DC, et al: Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology, 97: 390—399. 2002.

10. 資金ならびに研究班

(1) 研究班

日本医療研究開発機構(AMED)委託研究開発事業 「大量出血症例に対する血液製剤の適正な使用のガイドライン作成に関する研究」

(2) 研究開発代表者

宮田 茂樹 国立循環器病研究センター 臨床検査部 部長

(3) 研究開発分担者

板倉 敦夫 順天堂大学医学部産婦人科学講座 教授

上田 裕一 地方独立行政法人 奈良県立病院機構 奈良県総合医療センター 総長

碓氷 章彦 名古屋大学大学院医学系研究科 心臓外科学 教授

大北 裕 神戸大学医学部 心臓血管外科学 教授

大西 佳彦 国立循環器病研究センター 手術部 部長

香取 信之 慶應義塾大学 麻酔学教室 専任講師

久志本成樹 東北大学大学院医学系研究科外科病態学講座救急医学分野 教授

佐々木啓明 国立循環器病研究センター 心臓血管外科 医長

志水 秀行 慶應義塾大学 外科(心臓血管) 教授

西村 邦宏 国立循環器病研究センター 統計解析室 室長

西脇 公俊 名古屋大学大学院医学系研究科麻酔·蘇生医学分野 教授 松下 正 名古屋大学医学部附属病院 輸血部 教授 研究協力者 小川 覚 京都府立医科大学大学院医学研究科 麻酔科学教室 助教 紀野 修一 日本赤十字社北海道ブロック血液センター 副所長 医療法人社団シロタクリニック 名誉院長 久保 隆彦 齋藤 伸行 日本医科大学千葉北総病院 救命救急センター 病院講師 田中 裕史 神戸大学医学部 心臟血管外科低侵襲外科 特命教授 田村 高廣 名古屋大学医学部附属病院 麻酔科 病院助教

中井 陸運 国立循環器病研究センター 統計解析室 上級研究員

藤井 聡 旭川医科大学 臨床検査医学講座 教授

前田 琢磨 国立循環器病研究センター 輸血管理室 医長

前田 平生 埼玉医科大学総合医療センター 輸血細胞医療部 客員教授

牧野真太郎 順天堂大学医学部産婦人科学講座 准教授

松永 茂剛 埼玉医科大学総合医療センター 産婦人科 講師

(50 音順, 2018 年 3 月 31 日時点での所属, 職名)

11. ガイドライン作成担当者

(1) ガイドライン作成グループ

主な担当 CQ	所属		氏名
心臓血管外科 CQ1	奈良県立病院機構	総長	上田 裕一
(フィブリノゲン)	奈良県総合医療センター	形心又	
心臓血管外科 CQ2	名古屋大学	教授	碓氷 章彦
(MTP)	心臓外科	学 人打文	唯小 早/9
心臓血管外科 CQ3	慶應義塾大学	教授	志水 秀行
(PCC, rFVIIa)	外科 (心臓血管)	4人1又	心小 汚11
心臓血管外科 CQ4	神戸大学医学部	特命教授	田中 裕史
(抗線溶療法)	心臟血管外科低侵襲外科	1寸叩狄汉	四中 和艾
外傷	東北大学大学院医学系研究科	教授	久志本成樹
CQ1, CQ2	外科病態学講座	4人1又	
外傷	名古屋大学大学院医学系研究科	教授	西脇 公俊
CQ3, CQ4	麻酔・蘇生医学分野	学 人打文	四肠公復
産科	順天堂大学医学部	教授	板倉 敦夫
Q1, CQ2	産婦人科学講座	4人1又	
産科	シロタクリニック	名誉院長	久保 隆彦
CQ3, CQ4	(産婦人科)	有言院 区	八休 陛》
その他の領域	名古屋大学医学部附属病院	教授	松下正
CQ1, CQ2	輸血部	教技	松下正
その他の領域	慶應義塾大学	専任講師	香取 信之
CQ3, CQ4	麻酔科	分 正 碑 即	百以 后人

(2) Systematic review team

主な担当 CQ	所属		氏名
心臓血管外科	京都府立医科大学大学院	助教	小川 覚
CQ1, CQ3	医学研究科 麻酔科学教室	助教	小川 見
心臓血管外科	名古屋大学医学部附属病院	病院助教	田村 高廣
CQ2, CQ4	石口座八子区子印刷 禹州阮	71八 17元507 年入	山竹 同頃
外傷	日本医科大学千葉北総病院	病院講師	齋藤 伸行
CQ1, CQ3	救命救急センター	71八 17元 14号 1111	原原 1中11
外傷	国立循環器病研究センター	部長	宮田 茂樹
CQ2, CQ4	臨床検査部	प्रपा	古山 戊個
産科	埼玉医科大学総合医療センター	講師	松永 茂剛
CQ1, CQ3	産婦人科	中子 印巾	(14) 八四

産科 CQ2, CQ4	順天堂大学医学部 産婦人科学講座	准教授	牧野真太郎
その他の領域 CQ1, CQ3	旭川医科大学 臨床検査医学講座	教授	藤井 聡
その他の領域 CQ2, CQ4	国立循環器病研究センター 輸血管理室	医長	前田 琢磨

(3) 開示すべき COI

(3) 囲示りへさ	
宮田茂樹	【講演】第一三共【研究費】第一三共,田辺三菱製薬
上田裕一	【講演】CSL ベーリング
大北 裕	なし
碓氷章彦	【講演】テルモ、日本血液製剤機構
	【寄付金】テルモ,泉工医科工業,日本ライフライン,ニプロ,iCorNet 研究所,ファイザー,
	アステラス製薬,田辺三菱製薬,第一三共,大塚製薬,トレステック,エドワーズライフサイ
	エンス, 日本メドトロニック, セント・ジュード・メディカル, CSL ベーリング
西脇公俊	なし
松下 正	【講演】バイエル薬品,バクスアルタ,CSL ベーリング,ノボノルディスクファーマ,バイオ
	ジェン・ジャパン, バイオベラティブ・ジャパン
	【研究費】中外製薬、ノボノルディスクファーマ
	【寄付金】ノボノルディスクファーマ,バクスアルタ,ファイザー,CSL ベーリング
志水秀行	【寄付金】セント・ジュード・メディカル、アスト、エドワーズライフサイエンス、帝人ファー
	マ、第一三共、テルモ、小野薬品工業、日本ライフライン、武田薬品工業、日本血液製剤機
	構, 泉工医科工業
香取信之	なし
佐々木啓明	なし
大西佳彦	なし
西村邦宏	なし
久志本成樹	【研究費】ディバータ
	【寄付金】旭化成ファーマ,アステラス製薬,日本損害保険協会,ファイザー
板倉敦夫	なし
藤井 聡	なし
齋藤伸行	なし
前田琢磨	なし
中井陸運	なし
久保隆彦	なし
前田平生	なし
紀野修一	なし
小川 覚	なし
田村高廣	なし
松永茂剛	なし
田中裕史	なし
牧野真太郎	なし

(4) 資金と利害相反

本ガイドラインの作成のための資金は国立研究開発法人日本医療研究開発機構(AMED)委託研究開発事業「大量出血症例に対する血液製剤の適正な使用のガイドライン作成に関する研究」より得られた。本ガイドラインの内容は特定の営利・非営利団体、医薬品、医療機器企業などとの利害関係はなく、作成委員は利益相反の状況を日本輸血・細胞治療学会に申告している。

TRANSFUSION GUIDELINES FOR PATIENTS WITH MASSIVE BLEEDING

Shigeki Miyata¹⁾, Atsuo Itakura²⁾, Yuichi Ueda³⁾, Akihiko Usui⁴⁾, Yutaka Okita⁵⁾, Yoshihiko Ohnishi⁶⁾, Nobuyuki Katori⁷⁾, Shigeki Kushimoto⁸⁾, Hiroaki Sasaki⁹⁾, Hideyuki Shimizu¹⁰⁾, Kunihiro Nishimura¹¹⁾, Kimitoshi Nishiwaki¹²⁾, Tadashi Matsushita¹³⁾, Satoru Ogawa¹⁴⁾, Syuichi Kino¹⁵⁾, Takahiko Kubo¹⁶⁾, Nobuyuki Saito¹⁷⁾, Hiroshi Tanaka¹⁸⁾, Takahiro Tamura¹⁹⁾, Michikazu Nakai¹¹⁾, Satoshi Fujii²⁰⁾, Takuma Maeda²¹⁾, Hiroo Maeda²²⁾, Shintaro Makino²⁾ and Shigetaka Matsunaga²³⁾

Keywords:

massive bleeding, fibrinogen concentrate, massive transfusion protocol, recombinant activated factor VII, anti-fibrinolytic therapy

©2019 The Japan Society of Transfusion Medicine and Cell Therapy Journal Web Site: http://yuketsu.jstmct.or.jp/

¹⁾ Department of Clinical Laboratory Medicine, National Cerebral and Cardiovascular Center

²⁾Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University

³⁾ Nara Prefectural Hospital Organization, Nara Prefecture General Medical Center

⁴⁾Department of Cardiac Surgery, Nagoya University Graduate School of Medicine

⁵⁾Department of Cardiovascular Surgery, Kobe University

 $^{^{6)}}$ Operation Room, Anesthesiology, National Cerebral and Cardiovascular Center

⁷⁾Department of Anesthesiology, Keio University School of Medicine

⁸⁾Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine

⁹⁾Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center

¹⁰⁾Department of Cardiovascular Surgery, Keio University

¹¹⁾Department of Statistics and Data Analysis, Dept of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center

¹²⁾Department of Anesthesioloy, Nagoya University Graduate School of Medicine

¹³⁾Department of Transfusion Medicine, Nagoya University Hospital

¹⁴⁾Department of Anesthesiology, Kyoto Prefectural University of Medicine

¹⁵⁾Japanese Red Cross Hokkaido Block Blood Center

¹⁶⁾Shirota Obstetrical and Gynecological Hospital

¹⁷⁾Shock and Trauma Center, Nippon Medical School Chiba Hokusoh Hospital

¹⁸⁾Department of Surgery, Division of Minimum Invasive Surgery, Kobe University

¹⁹⁾Department of Anesthesiology, Nagoya University Hospital

²⁰⁾ Department of Laboratory Medicine, Asahikawa Medical University

²¹⁾Division of Transfusion Medicine, National Cerebral and Cardiovascular Center

²²⁾Transfusion Medicine and Cell Therapy, Saitama Medical Center/Saitama Medical University

²³⁾ Department of Obstetrics and Gynecology, Saitama Medical Center/Saitama Medical University